相关文章  
  • 个性化放疗方案明显提高生存质量 过半鼻咽癌患者告别并发症
  • 真核细胞的反义RNA也可以控制其正义RNA表达
  • 是自然选择法导致了癌细胞进化
  • 生物化石研究表明 台湾曾与大陆相连
  • 冰河期日本近海存在珊瑚礁
  • 科学家找到稳定动脉粥样斑块的药物
  • 研究表明:甲醇将成为我国重要的替代性汽车燃料
  • 中国力拓国际合作破解能源难题(图)
  • 美国采用高通量基因筛查技术研究肌萎缩性脊髓侧索硬化症(文)
  • 我国突破长效流滴棚膜关键技术
  •   推荐  
      科普之友首页   专利     科普      动物      植物    天文   考古   前沿科技
     您现在的位置在:  首页>>动物 >>生命科学

    科学家找到操纵DNA的新办法获两只进行研究(图)

    st a ships bow, was wrong. This is important for a few reasons, said Michael Solomon, associate professor in the Department of Chemical Engineering, Macromolecular Science and Engineering Program. Broken polymers dont function as intended, and if scientists dont know what causes them to break, they cant keep them from breaking, nor can they design them to break in specific places.For the past 40 years, scientists have not understood exactly which forces caused scission, said Solomon, who is the co-author on a paper published last week in the Proceedings of the National Academy of Sciences. The paper, "Universal scaling for polymer chain scission in turbulence," defines which flow forces and at what levels those forces cause polymers to break in turbulence. "This paper understands how they are breaking in a new way that resolves some issues that have been present for 40 years," Solomon said.The experiments that yielded the prevailing scission theories, Solomon said, did not take into account turbulence in the flow that occurred during the experiments, and how that turbulence attributed to polymers breaking. Those experiments measured only laminar or smooth flow, which is turbulent free. Yet, during their own experiments, the U-M team discovered that flow turbulence did indeed exist and that it was impacting the polymer quite a bit. Through experiments that accounted for turbulent flow, Solomon and co-authors Steven Ceccio, with appointments in the Department of Mechanical Engineering and Naval Architecture and Marine Engineering, and then-doctoral student Siva Vanapalli, were able to develop and test formulas for different polymers, and pinpoint exactly how they would react to different flows. Vanapalli is now a post-doctoral fellow at Twente University in the Netherlands.The equation they developed can be applied to design flows that break polymers into certain lengths, or to design polymers to withstand certain flows. This could have big implications for industries that rely on polymer coatings, such as shipping or oil."When the polymers are working their best the friction can be reduced by 70 percent," Ceccio said. The research also has implications in the field of gene therapy, allowing scientists another tool to control the length of the strands of DNA. In genome sequencing, the first step is to take the genome and break it into small pieces to reassemble it into the DNA strand that is best for further biochemistry, Solomon said. The research is supported by the Department of Defense. Its part of a larger project to examine many kinds of friction drag, and the U-M team has been conducting experiments at the William B. Morgan Large Cavitation Channel, a Navy-owned facility in Tennessee.The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million. Michigan Engineering has 11 departments and two NSF Engineering Research Centers. Within those departments and centers, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is seeking to raise $110 million for capital building projects and program support in these areas to further research discovery. Michigan Engineerings goal is to advance academic scholarship and market cutting-edge research to improve public health and well-being. For more information, visit the Michigan Engineering home page: http://www.engin.umich.edu
    < 1 >   < 2

         

          设为首页       |       加入收藏       |       广告服务       |       友情链接       |       版权申明      

    Copyriht 2007 - 2008 ©  科普之友 All right reserved