|
|
|
|
|
|
|
瘤有关的基因 的研究进展. 一、点突变的PCR直接检出(一)用PCR直接检测缺失: 当基因内缺失时,可用已知的该基因DNA序列在缺失片段的两侧设计一对引物, 然后进行PCR,对其产物行琼糖凝胶电泳,溴乙锭染色,紫外检测仪下检测有无特异 性的扩增产物,即可非常容易的判断待检称本中有无DN-段的缺失. 1.一对引物PCR检测缺失如果一个基因的DNA序列已经清楚,其缺失部位亦较为固 定,即可根据缺失发生区域的DNA序列在缺失片段的两侧合成一对合适的引物进行PCR, 然后琼脂糖凝胶电泳及溴乙锭染色,短波紫外灯下观察有无特异性的扩增片段,该方 法是检测基因片段缺失最为快速的方法,在实际应用中,为了避光因某些原因引起的 扩增失败而导致假阴性结果的出现,常在反应体系中加入一对与缺失片段无关的基因 引物,同时加以扩增,以确定无特异性扩增带并非因反应体系的原因的引起.如在应 用PCR技术进行X地贫Bartα基因胎儿水肿综合征义基因缺失检测时,常用一对引物扩 增缺失区域,同时同一对β基因引物扩增β基因的一个片段,然后电泳检测.若同时 即有α和β基因的特异性扩增产物,则说明α基因的扩增产物则说明模板DNA中有α 基因的缺失,为Bart胎儿水肿综合征. 2.多对引物的多重PCR检测缺失:对于某些遗传病的致病基因来说,其缺失具有明显的异质性,即在不同患者其缺 失片段有所不同,因而难以用一对缺失部位的引物将所有的缺失检出,在这种情况 下,我们可设计多对引物检测该基因的不同外显子区域,即用同一PCR体系扩增多个 外显子然后用琼糖凝胶电泳检测有无缺失的片段,若某一特异性的扩增产物带缺如, 则可判定为该片段的缺失,该检测方法是对已知结构基因有无缺失片段的最快速可行 的检测途径,目前已用于多种遗传病基因缺的检测.如在DMD/BMD缺失型突变的检测 中,用23对引物分为三组进行多重PCR可改98%的缺失得以检出,另外还有人用9对物 进行两组多重PCR,大约可检出DMD/BMD92%的缺失型突变. 3.用PCR技术进行杂合性丢失的检测:有报道,PCR技术尚可用于检测杂合性丢失可采用PCR-SSCP及PCR定量技术进行检 测.(二)单个碱量置换的PCR直接检出 1.直接检测限制性内切酶切点的变化-PCR产物酶解分析 PCR产物的酶解分析,主要用于检测可引起酶切位点改变--包括所增加的酶切位 点及原有的酶切点消失的单碱是量置换性点突变.当某一点突变引起DN-段中酶切位 点发生改变时,则可用酶切位点两侧的引物扩增一含该切点的DN-段,然后用相应 的内切酶进行处理,电泳检测,与正常的无改变的段进行对片分析即可确定有无酶切 位点的改变.比如状细胞贫血的发生即是由一酶切位点的改变的改,正常情况下靶DNA 的扩增产物为294bp,经OxaNI消化后产生191bp和103bp二个片段,但镰状细胞贫血的 突变使该切点消失,OxaNI消化后仍为294bp的片段,而杂合子则是有294、191和103 三个片段。用引方法检测突变快速可简便,但必须在突变点涉及到限制性内切酶切关 并引起进次复时不能因此方法检测,因此其应用受到限制,反能检出点突变的极少一 部分. 2.3特异PCR,扩增阻滞突变系统及等位特异PCR. 以上三种方法结构是基于以下机理,只是不同作者的采用的名河差别而异. 在PCR扩增时,引物的延伸是从其3未端开始的,而这种延伸的进行要求引物3端 的碱基与模板需完全配对,只有这样引物才能延伸,扩增才得以进行下去而得到预期 的扩增产物,若引物3端与模板不能配对,则引物的延伸即阻断,不能得到相对应的 扩增产物,基于以上事实,可利用3端含突变碱基的引物来检测靶DNA中有无相应的 突变位点,此即3特异PCR,扩增阻滞突变系统及等位特异PCR.该反应系统包含两个 PCR扩增反应,有两对引物但它们的3端有差异,一为正常引物,另一为3端编食突 变的引物,正常引物只与正常模板互解,PCR时扩增相应的产物,而食突变的引物只 与突变的模板附扩增出相应的产物.扩增完成后可直接同琼脂糖电泳技术检测分析结 果。利用该系统进行基因突变检测时不仅能检出突变的纯合子,而且能检出杂合子个 体,在这种情况下,同一个体的DNA模板利用突变引物和正常引物均能引发扩增反应. 尚可利用多对突变引物和正常引物进行多重3-特异PCR,可攻DNA分子上的多位点变 化的鉴定准确快速,简便。 3.PCR直接测序 DNA序列分析是检测基因突变最直接最可信的方法,它不仅可确定突变的部队, 而且还可确定突变的性质.PCR直接测序是指对PCR产物进行的直接序列分析,而不是 家传的测序技术先将DNA待测片段克隆于测序载体上,这不仅大大的简化了操用步 骤,节省大量的人力和物力,而且可实现自动化操用,加之新的荧光检测技术的应 用,使测序的效率大大提高. 采用PCR循环直接测序时,应首先将扩增产物转化为单链测序模板,目前常用的 转化方法为不对称PCR,即在反应体系中引物浓度的差异来形成单链DNA,通常侧引物 的浓度为100∶1.当某一引物被耗尽后,另一引物扩增的片段即为单链然后即可用于 测序,此外,获得单链DNA还有磁珠俘获法,外切酶消化法及Genomic amplification with transcript sequeucing法(简称GAWTS法).PCR直接测序的最新发展是将双脱氧 络子技术与PCR技术相结合进行循环测序,在PCR反应体系中同时将ddNTP加入,并利 用同位素或荧光素标记的引物引导扩增后,得模板的扩增与测序同时进行,其特异在 于使用的模板量小且不需分离单链. 应用PCR测序有以下优点: (1)附模板的要求,模板需要量小. (2)方法简便,操作易于标准化,自动化. (3)测序效率高,准确,在短时间即可完成.4.PCR-寡核苷酸探针斑点杂交(PCR-ASb) 如果一个基因的突变部位,性质经测序分析已经阐明,即可用该方法直接检测突 变.该方法的原理即利用人工合成的寡核苷酸片段(一般为19n+)作为探针,与经PCR扩 增获得的靶DNA进行杂交,在严格控制杂交条件的前提下,通过斑点杂交式其它类型 的杂交来检测PCR产物中有无丰应突变,即探针与靶DN-段之间只要有一个碱基不相 互配对或错记,就能检出. (1)探针,探针一般合成两个,一个为正常序列,另一含有突变位点,前者与正 常靶DNA完全互解,后地只与突变DNA互补,一般长充为19bt.该探针称之为等位特异 寡核苷酸探针(allele specific oligo nucleotide probe,ASO探针). (2)杂交类型,PCR技术的出现,从根本上解决了靶DNA的来源问题,使人们能在 很短的时间内获足够量的靶DNA,传统的PCR-ASO技术主要是将PCR,占物固定于杂交 膜上,然用不同的标记探针检测,亦有将已标记好的探针预先固定于杂交膜上,再使 之与PCR产物结合,检测有无完全互补的DNA产物. (3)探针的标记,最先应用的标记物为放射性物质有32P,34S,但由于其来源, 半衰期及放射性危害不能普遍应用.PCR技术的引进使可在短时间内获得足够量的靶 DN-段,因而对探针的要求亦有的降低,因非同位素标记的探针亦可获非常满意的 结果,它不仅使ASO探针使用起来受加快是简便,而且无同位素半衰期的限制,操作 亦受安全,适合于临床应用.目前已用PKU,β地贫杂的基因突变检测. 共2页: 上一页 1 [2] 下一页 < 1 > < 2 >
|
|
|
|
设为首页 | 加入收藏 | 广告服务 | 友情链接 | 版权申明
Copyriht 2007 - 2008 © 科普之友 All right reserved |