|
|
|
|
|
|
|
的星系所占的比例越来越大。对Sc系和Irr系来说,有发射线的甚至占绝大多数。少数特殊河外星系的光谱主要是发射线,吸收线很少,有的甚至完全没有吸收线。还有个别的河外星系只有累续光谱,至今没有看到任何谱线。
三、亮度
绝对星等。如果知道了河外星系的距离,从观测得到的视星等可以求得绝对星等,或者光度。观测表明,河外星系的绝对星等弥散很大。其中椭圆星系的绝对星等弥散最大,最亮的可以亮至-22等,最暗的可以暗到-10等以下。旋涡星系和不规则星系的绝对星等相对说来弥散较小。
范登堡按照绝对星等的大小把河外星系分为五类:超巨系、亮巨系、巨系、亚巨系和矮系。这五类分别以罗马字Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ表示。基于这一点,范登堡提出了河外星系的二元分类法,即在哈勃类型的基础上再加上光度型。这种分类法与恒星的二元光谱分类法很类似。
表面亮度。河外星系是面光源,我们可以测量它的表面亮度,研究表面亮度的变化规律。通常,表面亮度用星等/角秒2表示。一般说来,物质密度越大,辐射就越强,光度在星系视面上的变化情况反映了物质分布的情况。因此,研究亮度的变化规律,对搞清星系的结构是很有价值的,不同类型星系的表面亮度很不相同,椭圆星系的亮度、旋涡星系的亮度、透镜状星系的亮度各有不同。
四、恒星组成
研究河外星系的恒星组成的最直接方法是尽可能地用大望远镜把星系分解为恒星。的确,在较近的星系里观测到大量的各种类型的恒星,如OB星、中晚型超巨星、天琴座RR型变星、经典造父变星、新星、超新星、长周期变星等。也观测到许多疏散星团和球状星团。但是这种方法受到很大限制,因为,河外星系毕竟离我们太远了。即使对于较近的星系,也只能观测到它里面的高光度恒星。比如说,仙女座大星云,如果用5米望远镜观测,取它的极限星等为23等,也只能观测到绝对星等-1.4等的恒星,像太阳型矮星根本就观测不到。如果星系的距离超过一百万秒差距,即使里面有超新星爆发,我们也观测不到。一般说来,我们可以通过研究星系的光谱和颜色来研究星系的恒星组成。
椭圆星系和旋涡星系的核球在光谱、色指数等方面很相似,说明它们的恒星组成很相似。相对说来,旋臂的光谱型较早,颜色较蓝,说明旋臂的恒星组成与核球的不一样。正是根据对银河系和河外星系的研究,巴德才提出了两个星族的概念。椭圆星系和旋涡星系的核球主要由星族Ⅱ组成;旋臂及不规则星系主要由星族Ⅰ组成。但是需要指出,每个星系,包括椭圆星系和不规则星系,决不是只包括一种星族的恒星。比如说,椭圆星系的光谱里常有一些重元素的谱线。这些谱线的强度表明,重元素的含量比极端星族Ⅱ恒星高。因此,椭圆星系也可能包含一些盘星族恒星。相反,不规则星系,也可能包含一些星族Ⅱ恒星,如大小麦哲伦云里发现了许多天琴座胍型变星和球状星团,这些都是极端星族Ⅱ的恒星。
五、气体和尘埃含量
许多星系的光谱中有类似于银河星云的发射线,说明它们有星际气体存在。中性氢21厘米谱线的观测也证实了这点。椭圆星系中有发射线的很少;另外,除了一个椭圆星系外,其余的迄今为止还没有观测到中性氢21厘米线。这些说明椭圆星系中没有气体或气体很少。但是,有一些椭圆星系的核心部分,观测到强的发射线,包括许多禁线,因此,在核心部分应该有气体存在。椭圆星系和不规则星系肯定有星际气体和尘埃。事实上,在一些较近的旋涡星系和不规则星系里,直接看到许多气体星云。观测表明,从Sa到Irr气体含量逐渐增加,Irr中气体的含量达 20%以上。气体和尘埃主要集中在对称面附近。在一些侧面对着我们的旋涡星系中,可以清楚看到尘埃的消光作用产生的吸收暗带。
< 1 > < 2 >
|
|
|
|
设为首页 | 加入收藏 | 广告服务 | 友情链接 | 版权申明
Copyriht 2007 - 2008 © 科普之友 All right reserved |