相关文章  
  • 什么是星座
  • 三垣二十八宿
  • 岁差和章动
  • 月面辐射纹
  • 认识宇宙系列之一:宇宙是什么
  • 认识宇宙系列之二:宇宙的形状
  • 认识宇宙系列之三:宇宙的结构
  • 认识宇宙系列之四:宇宙的运动
  • 认识宇宙系列之五:宇宙究竟有多大
  • 认识宇宙系列之六:宇宙的年龄
  •   推荐  
      科普之友首页   专利     科普      动物      植物    天文   考古   前沿科技
     您现在的位置在:  首页>>天文 >>天文天象

    黑洞是什么?

    1916年广义相对论出现不久,卡尔.史瓦西(Karl Schwarzchild)就求出了用以描述时空的爱因斯坦方程的一个十分有用的解。该解作为时空的一种可能的形状,可以用来描述一个球对称的、不带电、无自旋的物体(可能也可用于近似描述如地球和太阳等缓慢自旋的物体)之外的引力场。其原理就和当你想研究地表之外的牛顿引力而将地球视为质点一样。   这个解很象一个“公制”。它和将毕达哥拉斯公式加以归纳以给出平面上线段长度一样,此“公制”可以作为获取时空中曲线段“长度”的公式。物体沿时间(“时间的坐标轴”)运动的曲线的长度如果用此公式计算,就恰是该运动物体所经历的时间。公式的最终形式取决于你选择用来描述事物的坐标系。公式可以因坐标不同而变形,但象时空弯曲这样的物理量却不会受影响。史瓦西用坐标的术语表述了它的“公制”概念:在距离物体很远的地方,近似于一个带有一条用以表示时间的附加t轴的球坐标,另一个坐标r用作该处的球坐标半径;而更远的地方,它只给出物体的距离。   然而当球坐标很小的时候,这个解开始变得奇怪起来。在r=0的中心处有一个“奇点”,那里的时空弯曲是无限的;围绕该点的区域内,球坐标的负方向实际成为时间(而非空间)的方向。任何处于这个范围内的事物,包括光,都会为潮汐力扯碎并被强迫坠向奇点。这个区域被一个史瓦西坐标消失的面与宇宙的其他部分分离开来。当然该处的时空弯曲没有任何问题(这个球面半
    < 1 >   < 2

         

          设为首页       |       加入收藏       |       广告服务       |       友情链接       |       版权申明      

    Copyriht 2007 - 2008 ©  科普之友 All right reserved