应,通过压缩体积而增大系统的总压力,就等于增加了单位体积内组分气体的量,增加了气体组分的浓度,气体组分浓度与其分压呈正比,所以,系统总压力的增大必将引起各组分气体分压的增大。J≠Kθ,平衡则要发生移动。
总压力变化对平衡移动的影响与浓度变化对平衡移动的影响有不同之处。浓度变化时,往往只是某一组分浓度的变化,其它组分浓度不一定也变化。但在平衡系统中,增大或减小总压力,各组分气体的分压都同时增大或减小同样倍数。
任一反应aA(g)+bB(g)=yY(g)+zZ(g)
令Δn=y+z-a-b
当系统被压缩,总压力增大x倍时,相应各组分气体分压也同时增大x倍,此时平衡被破坏,系统处于非平衡态,有:
J=XΔnKθ
对于气体分子数增加的分压,Δn>0,XΔn>1,J>Kθ,平衡逆向移动,即增大压力,各组分气体分压增大,平衡向气体分子数减少的方向移动。
对于气体分子数减少的反应,Δn<0,XΔn<1,J对于反应前后气体分子数不变的反应,Δn=0,XΔn=1,J=Kθ,平衡不移动。
同样分析,用于总压力减少时,得出向气体分子数增加的方向移动。
结论:在平衡态时,增大压力,总是向气体分子数减少的方向移动;减小压力,总是向气体分子数增加的方向移动。
如果在一平衡系统中加入惰性气体,对于平衡移动的影响主要看各组分分压变化情况。
恒温恒压条件下,体积增大,相似于溶液的稀释作用,各组分浓度降低,分压减小,平衡要向气体分子数增多的方向移动。
恒温恒容条件下,总压力增大,但组分气体分压不变,J=Kθ,平衡不移动。
总压力变化时,检查各组分气体分压是否改变?分压增大,平衡向气体分子数减少的方向移动,反之,则向气体分子数增多的方向移动。
4.3.3温度对化学平衡的影响
温度对化学平衡移动的影响与前二者不同,温度的变化导致kθ的改变。
温度变化对kθ的影响与热效应有关,可据范特霍夫公式进行计算。
Igkθ2/kθ1=(ΔH/2.303R)(T2-T1)/T2T1
讨论:
1、正反应为放热分压,ΔHθ<0,升温T2>T1,有kθ1>kθ2,平衡逆向移动,吸热方向。降温时则相反,正向移动(放热方向)。
2、正反应为吸热反应,ΔHθ>0,升温T2>T1,有kθ1<kθ2,平衡正向移动,吸热方向。降温,逆向移动(放热)。
总之,升温总是向吸热方向移动,降温总是向放热方向移动。
4.3.4勒夏特里原理(平衡移动原理)
1、增加反应物浓度(或分压),平衡正向移动,向减小反应物浓度(或分压)的方向移动。减少反应物浓度(或分压),平衡逆向移动,向增加反应物浓度(或分压)的方向移动。
2、对于有气体参加的反应,增大总压力,平衡向着气体分子数减少的方向移动,向减少总压力的方向移动。若减小总压力,平衡向气体分子数增加的方向移动。
3、升温,向吸热方向移动,向降低系统温度的方向移动;
降温,向放热方向移动,向升高系统温度的方向移动。
总之,如果改变平衡系统的条件之一,平衡就向着削弱这种改变的方向移动,称为勒夏特里原理(平衡移动原理)
4.3.5两个需要说明的问题
1、催化剂与化学平衡
催化剂可以缩短到达平衡的时间,但不能改变平衡状态。
2、化学平衡与反应速率原理的综合应用
升高温度可以加快反应速率,有时却使平衡右移降低反应率,上一页 [1] [2] [3] [4] 下一页
|