我国C60和碳纳米管的研究进展 |
|
|
来源:不详 更新时间:2012-3-6 9:34:17 |
|
|
研究了C60的光克尔效应,证实了C60的非线性效应起源于的π电子,并研究了C60电荷转移复合物的非线性性质。在研究C60甲苯溶液的光限制效应时,他们首先发现了反饱和吸收过程的饱和现象,并给出了理论解释。中科院化学研究所在对C60进行化学修饰后进行PVK掺杂,发现了一全新的光导体体系,此体系暗导小,放电迅速,且完全具有重要的潜在应用价值。另外,他们还发现了一类新的光限幅材料,此材料在线性透过率高达80%的条件下,其限幅幅值为300mJ/cm2,具有潜在实用价值。
5富勒烯金属包合物的研究
1990年电弧法大量合成富勒烯获得成功后,金属包合物的研究一直是国际富勒烯研究的前沿课题。有可能在超导、铁磁性材料、光学材料等方面有应用前景。富勒烯金属包合物目前合成方法主要有电弧法和离子束轰击法。分离提纯用二步HPLC法,因此合成产率低和分离困难,仍然是该研究的主要障碍。富勒烯包合物可分为三类:金属包合物Mn@C2n;惰性气体包含物(He,Ne,Ar,Xe)@C2n和非金属分子包合物(CO,CN)@C2n。其中以金属包合物为主,被包入的金属主要是Sc、Y和大多数镧系元素,碱金属和碱土金属。
6碳纳米管的研究
碳纳米管自1991年被发现特别是单层碳纳米管的发现和宏观量的合成成功以来,引起了人们的广泛兴趣,已成为富勒烯领域的一个主要的研究热点,是物理化、化学和材料科学等学科中最前沿的研究领域之一。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。科学家们预测碳纳米管将成为21世纪最有前途的一维纳米材料,纳米电子器件材料和新一代平板显示材料。
碳纳米管的制备主要有直流电弧法,催化法和激光法。北京大学发现在阴极中掺杂Y2O3可以大提高阴极沉积物中的碳纳米管的含量,同时,他们和中科院电镜中心合作对电弧法合成碳纳米管横截结构的高分辨电镜研究显示,碳纳米管的实际结构比理想模型复杂得多,它是由理想同心石墨片圆柱形结构,而很多是卷曲石墨结构,结构中存在大量位错,而且横截面是多边椭圆形。中国科学院物理研究所所采用独特的方法,获得高密度、高纯度、大面积、高取向的离散纳米管列阵,其长度可达90μm,被国际同行公认为一种全新的制备方法。另外北京大学在单层碳纳米管的制备和研究方面也取得了一些成果:在单层碳纳米管的大量合成方面,他们利用新型的催化剂在一定的电弧条件下,每天可获得数十克纯度约为50%~70%的粗产品,经纯化可使单层碳纳米管的纯度超过90%;在研究过程中,他们提出了以乙炔型碳化物为连接桥梁的单层碳纳米管的生长机理,根据此模型利用不同的催化剂,合成出不同直径分布的单层纳米管,为研究和制备以单碳纳米管为基质的纳米器件单元提供了可选择的原料;他们还对纯化后的单层碳纳米管经化学处理,可将其裁剪和分离成不同长度的单层碳纳料管,经裁剪的单层碳纳米管极易分散在水、酒精和DMF等极性溶剂中形成胶体,为进一步进行化学修饰、功能化和模板组装打下基础。
我国在碳纳米复合材料方面也取得了卓有成效的研究结果。清华大学采用激光合金化及后淬火工艺合成碳纳米管/45#钢复合材料,复合材料硬度可达HRC69,抗磨性质比同样工艺条件下合成的石墨/45#钢复合材料提高40%。
目前,国际上对碳纳米管的研究方兴未艾。美国佐治亚工学院王中林教授等对碳纳米管进行了大量的研究,发现了许多新科学的现象,并发现了世界上最小的称:纳米称。
7展望
富勒烯和碳纳米管由于其独特的结构和化学物理性质,已对化学、物理、材料科学产生了深远的影响,在应用方面显示了诱人的前景。随着研究的不断深入,碳原子簇给人类带来巨大的财富。
上一页 [1] [2]
|
上一个化学: 铝锅中的铝在煮饭极时怎样溶出? 下一个化学: 高考化学专题复习学案导学模式的讨论 |
|
|
|
|