|
|
|
|
|
|
|
密码术的新时期。
1992年,贝内特又提出一种更简单,但效率减半的方案,即B92方案。量子密码术并不用于传输密文,而是用于建立、传输密码本。根据量子力学的不确定性原理以及量子不可克隆定理,任何-者的存在都会被发现,从而保证密码本的绝对安全,也就保证了加密信息的绝对安全。最初的量子密码通信利用的都是光子的偏振特性,目前主流的实验方案则用光子的相位特性进行编码。目前,在量子密码术实验研究上进展最快的国家为英国、瑞士和美国。英国国防研究部于1993年首先在光纤中实现了基于BB84方案的相位编码量子密钥分发,光纤传输长度为10公里。这项研究后来转到英国通讯实验室进行,到1995年,经多方改进,在30公里长的光纤传输中成功实现了量子密钥分发。与偏振编码相比,相位编码的好处是对光的偏振态要求不那么苛刻。在长距离的光纤传输中,光的偏振性会退化,造成误码率的增加。然而,瑞士日内瓦大学1993年基于BB84方案的偏振编码方案,在1.1公里长的光纤中传输1.3微米波长的光子,误码率仅为0.54%,并于1995年在日内瓦湖底铺设的23公里长民用光通信光缆中进行了实地表演,误码率为3.4%。1997年,他们利用法拉第镜消除了光纤中的双折射等影响因素,使得系统的稳定性和使用的方便性大大提高,被称为“即插即用”的量子密码方案。美国洛斯阿拉莫斯国家实验室,创造了目前光纤中量子密码通信距离的新纪录。他们采用类似英国的实验装置,通过先进的电子手段,以B92方案成功地在长达48公里的地下光缆中传送量子密钥,同时他们在自由空间里也获得了成功。1999年,瑞典和日本合作,在光纤中成功地进行了40公里的量子密码通信实验。在中国,量子密码通信的研究刚刚起步,中科院物理所于1995年以BB84方案在国内首次做了演示性实验,华东师范大学用B92方案做了实验,但也是在距离较短的自由空间里进行的。2000年,中科院物理所与研究生院合作,在850纳米的单模光纤中完成了1.1公里的量子密码通信演示性实验。总的来说,比起国外目前的水平,我国还有较大差距。量子力学的研究进展导致了新兴交叉学科—量子信息学的诞生,为信息科学展示了美好的前景。另一方面,量子信息学的深入发展,遇到了许多新课题,反过来又有力地促进量子力学自身的发展。当前量子信息学无论在理论上,还是在实验上都在不断取得重要突破,从而激发了研究人员更大的研究热情。但是,实用的量子信息系统是宏观尺度上的量子体系,人们要想做到有效地制备和操作这种量子体系的量子态目前还是十分困难的。
人类在20世纪能够精确地操控航天飞机和搬动单个原子,但却未能掌握操控量子态的有效方法。在21世纪,人类应积极致力于量子技术的开发,推动科学和技术更迅速地发展。
< 1 > < 2 >
|
|
|
|
设为首页 | 加入收藏 | 广告服务 | 友情链接 | 版权申明
Copyriht 2007 - 2008 © 科普之友 All right reserved |