|
|
|
|
|
|
|
一个雄心勃勃的目标,即进一步加强“鼓波”的能力,使之无愧于液体脑的称号。为了证明液体脑的概念潜力无限,前途光明。安德鲁特别设计了液体脑的载体———果冻机器人。它有人造的眼睛,合成的荷尔蒙。也许有一天,果冻机器人可以感受到周围的环境,甚至有可能感受到人类的情感。
化学计算机有个十分复杂而又特别迷人之处,称之为贝洛索夫-恰鲍廷斯基反应(BZ反应),它是由3个不同的反应组成的化学振荡反应。每个反应都有不同的分子和离子,当加入特定的化学成分后,首先触发第一个反应,所产生的生成物可以触发第二个反应,随后第二个反应的生成物又可以触发第三个反应,第三反应的生成物再触发第一个反应,由此循环往复。更为迷人的是,各个不同的反应会产生不同的颜色,因此可以形成红蓝交替的波。
BZ反应之所以重要,在于利用它可以解决一些数学难题,尤其是一些现在的计算机难以解决的问题。比如,迷宫最短路径问题。用传统的计算机解这一问题必须要穷尽所有的路径,然后再进行比较,这需要耗费大量的时间。而利用BZ反应则不同。由于波在传播和扩散时,总是走最短的路径。只要利用照相机,记录下波的运动轨迹,就可以解决这一难题。
上个世纪90年代中安德鲁意识到,BZ反应有更重要的应用,那就是可以用于化学处理器。为此,他组织起一个专门的班子,并开发了两个化学处理器的概念模型。一个模型可以模仿人类的手臂与大脑的反馈活动。另一个由两个BZ反应组成,可以在一个布满家具的房间内自动移动到目的地。虽然这两个概念模型表现还不错,安德鲁却意识到,如果要让化学处理器处理更为复杂的运算过程,必须要有逻辑门。
美国波士顿大学的一项理论研究引起了安德鲁的注意。该研究认为,可以模仿斯诺克撞球,制造一种形式简单的处理器。也就是说,每个球可以代表1或0,球的碰撞过程就是计算过程,球如何相撞,相撞后弹出的方向,可以精确地表现为逻辑过程。换句话说,碰撞结果可以成为逻辑门的等价物。这样,安德鲁的任务就变成如何让BZ波进行碰撞。
去年,安德鲁的研究取得重大突破。他把BZ混合物放到卤化银薄胶层上,由于卤化物可以起到化学阻滞剂的作用,胶层可以延缓波的传播速度。这样,BZ反应就不会形成完整的圆形波,只是形成了小段的圆弧,并且沿直线进行传播,安德鲁将之称为BZ弹。BZ弹更多地表现出准粒子的特性,而不是波的特性,其表现与撞球相似。实验中,安德鲁发现,两个BZ弹在特定的角度相撞时,只在特定的方向产生唯一的输出。如果仅有一个输入,则在该方向没有输出。这样安德鲁就研究出了逻辑与。此后,他又相继研究出逻辑或、逻辑非以及逻辑互斥,这就为安德鲁的化学处理器奠定了坚实的基础。
安德鲁的化学处理器虽然还处于初级阶段,但他已把目光转向了并行化学处理器。对于化学处理器能否成功,人们还处于未知阶段,但科学家相信,如果人类能够具备控制纳米级水平制造波的能力,化学处理器就很可能实现。正如一些专家所言,不管安德鲁的志向能否实现,他的研究工作无论对揭示人类大脑的奥秘,还是制造更好的处理器,均具有十分重要的意义。毕竟,化学处理器是生物组织器官和电子设备之间的一座桥梁。
< 1 > < 2 >
|
|
|
|
设为首页 | 加入收藏 | 广告服务 | 友情链接 | 版权申明
Copyriht 2007 - 2008 © 科普之友 All right reserved |