|
|
|
|
|
|
|
旋结构相比,蛋白质中的螺旋是由氨基酸经脱水组成的单链螺旋,蛋白质末端运动自由度较大,可以组成三圈螺旋,三圈螺旋还可以转变成折叠形状。从这种意义上讲,折叠是螺旋的一种特殊形式。
人体中的蛋白质就是螺旋与折叠结构复合而成的复杂结构。比如,人体中重要的蛋白质——胶原蛋白就是由三条肽链拧成“草绳状”三股螺旋结构,其中每条肽链自身也是螺旋结构。人体中有16%左右是蛋白质,胶原蛋白占体内蛋白质总量的30%~40%,主要存在于皮肤肌肉、骨骼、牙齿、内脏与眼睛等处。
除遗传物质与蛋白质外,我们的主要食物淀粉的结构和所穿衣物(棉)中的主要成分棉纤维,也多是螺旋结构。
螺旋生物体
不仅生物大分子采取了螺旋的构型,而且有时整个生物体的形状或生物体的组成部分也可以是螺旋体。我们熟悉的螺旋藻就是这样的一种生物,其得名就是由于其形体在显微镜下观察时呈螺旋状的缘故。螺旋藻是地球上最早出现的光合生物,研究表明,螺旋藻是所有已被发现的生物中营养成分最丰富,最全面,最均衡的海洋生物。它的细胞壁是由多糖类物质构成,极易被人体消化吸收,吸收率可达95%以上。此外,螺旋藻还富含胡萝卜素,亚麻酸和亚油酸等活性物质,有清除血脂、疏通血管和保持血管弹性的作用,对防治心、脑血管疾病很有益处。螺旋藻是人类的朋友,而下面的另一种螺旋状的生命体就不能算是人类的朋友。
寄居在胃里的幽门螺旋杆菌,也是因其呈杆状、螺旋形而得名。胃液对许多细菌具有强烈的杀伤力,但对幽门螺旋杆菌却奈何不得。幽门螺旋杆菌埋藏在胃壁表面的黏膜下方,能够分泌一种物质来中和周围环境中的强酸,这是其过人之处。幽门螺旋杆菌很爱挑衅我们的免疫系统,往往激怒免疫系统发动初步的无情攻击,导致发炎反应。因此感染幽门螺旋杆菌的人,会出现没有症状的胃炎(也就是胃粘膜发炎)。人进入中年之后,会很容易得这些病,这都是幽门螺旋杆菌的祸害所致。
除上述生物体本身呈螺旋状外,而有些生物却借助螺旋形状实现它们独特的功能。水黾就是利用其腿部特殊的微纳米螺旋结构效应在水面上行动自如,即使在狂风暴雨和急速流动的水流中也不会沉没而下沉。原来,这些取向的微米刚毛和螺旋状纳米沟槽的缝隙内可以有效吸附空气,在其表面形成一层稳定的气膜,阻碍了水滴的浸润,从而表现出水黾腿的超疏水(即不浸水)特性。对其腿的力学测量表明:仅仅一条腿在水面的最大支持力就达到了其身体总重量的15倍。
生命为何爱螺旋?
由上述得知,大自然几乎到处都存在螺旋。螺旋结构是自然界最普遍的一种形状,许多在生物细胞中发现的微型结构都采用了这种构造。那么,为何大自然对这种结构如此偏爱呢?在近期的《科学》杂志报道了这一现象的数学解释。
美国宾州大学的兰德尔·卡缅教授指出,从本质上来看,在拥挤的细胞(例如一个细胞里的DNA)中,非常长的分子聚成螺旋结构是一个较佳的方式。在细胞稠密而拥挤的环境中,长分子链经常采用规则的螺旋状构造。这一构造有两点好处:可以让信息紧密地结合其中;还能够形成一个表面,允许其他微粒在一定的间隔处与它相结合。例如,DNA的双螺旋结构允许进行DNA转录和修复。
卡缅教授通过一个模型说明了这个问题:把一个能随意变形、但不会断裂的管子浸入由硬的球体组成的混合物中,管子就像是一个存在于十分拥挤的细胞空间中的一个分子。观察发现对于短小易变形的管子而言,U形结构的形成所需的能量最小,空间也最少。而它的U形结构,在几何学上与螺旋结构最为近似。
卡缅指出:“看来,分子中的螺旋结构是自然界能够最佳地使用手中材料的一个例子。DNA由于受到细胞内的空间局限而采用双螺旋结构,就像是由于公寓空间局限而采用螺旋梯的设计一样。”这是生物大分子采取螺旋结构的合理的数学解释。然而为何生物体也以螺旋结构的形状存在的原因仍不清楚,还有待进一步的研究。 (《大科技》杂志 )
< 1 > < 2 >
|
|
|
|
设为首页 | 加入收藏 | 广告服务 | 友情链接 | 版权申明
Copyriht 2007 - 2008 © 科普之友 All right reserved |