美国佐治亚理工学院(Georgia Institute of Technology)王中林教授领导的研究小组最近利用肖特基特性制备出高性能传感器——紫外光传感器和生物传感器。与传统的基于欧姆接触的传感器相比,这些传感器不仅把灵敏度提高了几个数量级,而且其反应时间和恢复时间也有数量级上的改善。这一发现为传感器的进一步发展提出了一个重要的新思路。
传统的传感器依赖纳米线的表面效应(侧面)和气体或生物分子在表面的吸附和解吸附过程。为了提高器件对光、化学气体或生物分子的灵敏度,纳米线需要非常小,从而其表面效应能够显著。同时研究人员采用欧姆接触来降低接触电阻的影响,从而进一步突出表面效应。另外,分子在表面的吸附和解吸附是一个相对较慢的过程,这也导致相应的传感器反应时间和恢复时间较长,甚至在100秒以上,这也严重地限制了传感器的应用。
王中林教授领导的小组深入分析比较了肖特基接触和欧姆接触的原理和特点,提出了肖特基接触也可以用于构造传感器,而且其性能可以更好。基于这一想法,他们成功研制出紫外光传感器和生物传感器,其结果分别发表于《应用物理快报》(Applied Physics Letters, 2009, 94, 191103)和《先进材料》(Advanced Materials, 2009, 21, online)。这一新型紫外光传感器不仅灵敏,其反应时间和恢复时间也有了质的飞跃。采用同样氧化锌纳米线但两端是欧姆接触的传感器在开关紫外光后恢复时间长达417秒,而基于肖特基的传感器仅仅0.8秒。利用高分子进行表面修饰后其恢复时间进一步缩短到0.02秒,从而达到了四个数量级的提高。与此相似,采用同样氧化锌纳米线但两端是欧姆接触的传感器对生物分子没有明显响应。改用肖特基后,传感器不仅有显著的响应,并且响应和恢复非常迅速。对于生物分子传感,其灵敏度提高了三到四个数量级,并能有效区分出所带电荷的正负。
这些新型传感器的优异性能归功于肖特基接触。肖特基势垒和界面附近的内建电场对电流的传输起到关键作用,而纳米线主体和表面的影响则相对较弱。外界因素(紫外光或生物分子)可以直接影响肖特基势垒和界面附近的内建电场。这一变化可以比表面效应更为显著地调制通过传感器的电流,从而提高了器件的灵敏度。肖特基势垒和内建电场的变化和对电流的调制可以在极短的时间内完成,所以这一新型传感器拥有了基于欧姆接触的传感器无可比拟的反应和恢复时间。(来源:科学网)
|