方法一:教师为学生提供硬纸板做成的大小不同的圆片,要求先测量圆的直径,再一一在直尺上滚动一周,并记录其周长,然后引导学生去发现圆周长和直径的关系。
方法二:教师先通过多媒体创设情景,然后提供材料,多种材料制作的圆片和纸片上的圆形,让学生去探索圆的周长和直径的关系。
显然,方法一是让学生在老师的指令下去验证圆的周长和直径的关系,是重结论的“记”数学活动。而方法二则是在一定情景之下,从问题意识为线索的“做”数学活动。这里问题情景的创设在于学生在探究问题的过程中不断产生认知冲突:“圆形的应用无处不在,而用硬纸做的用滚动或细绳的方法可以测量,但软布做的圆不能这样测量,怎么办?”问题的解决和方法、知识的局限性的矛盾不断得到激活,诱发学生的探求欲望和热情,在小组合作学习中,通过相互启发,探索,可以用折叠的方法。但对画在纸上的圆这种方法又受到了挑战。学生自然会转入给周密的探索之中。这样整个活动的过程就是学生质疑问难的过程,体现了发现问题、提出问题、解决问题的过程。
二、“做”数学,引导学生“玩”
少年儿童的天性就是好“玩”,新课程的数学也要一改过去那古板的面孔,让学生好好的“玩”!
“玩”数学就是学生在积极情感体验下以特质或物质化活动方式去感知事物。有了问题意识的玩,“玩”就有了方向。如果说
上一页 [1] [2] [3] [4] [5] 下一页