欢迎您:登录 | 注册
科普之友首页
※您现在的位置: 科普之友 >> 数学 >> 数学教学教研 >> 正文  

三角函数的诱导公式

来源:不详       更新时间:2013-6-20 23:24:29
 
三角函数的诱导公式
  
  常用的诱导公式有以下几组:
  
  公式一:
  
  设α为任意角,终边相同的角的同一三角函数的值相等:
  
  sin(2kπ+α)=sinα
  
  cos(2kπ+α)=cosα
  
  tan(2kπ+α)=tanα
  
  cot(2kπ+α)=cotα
  
  公式二:
  
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  
  sin(π+α)=-sinα
  
  cos(π+α)=-cosα
  
  tan(π+α)=tanα
  
  cot(π+α)=cotα
  
  公式三:
  
  任意角α与-α的三角函数值之间的关系:
  
  sin(-α)=-sinα
  
  cos(-α)=cosα
  
  tan(-α)=-tanα
  
  cot(-α)=-cotα
  
  公式四:
  
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  
  sin(π-α)=sinα
  
  cos(π-α)=-cosα
  
  tan(π-α)=-tanα
  
  cot(π-α)=-cotα
  
  公式五:
  
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  
  sin(2π-α)=-sinα
  
  cos(2π-α)=cosα
  
  tan(2π-α)=-tanα
  
  cot(2π-α)=-cotα
  
  公式六:
  
  π/2±α与α的三角函数值之间的关系:
  
  sin(π/2+α)=cosα
  
  cos(π/2+α)=-sinα
  
  tan(π/2+α)=-cotα
  
  cot(π/2+α)=-tanα
  
  sin(π/2-α)=cosα
  
  cos(π/2-α)=sinα
  
  tan(π/2-α)=cotα
  
  cot(π/2-α)=tanα
  
  诱导公式记忆口诀
  
  ※规律总结※
  
  上面这些诱导公式可以概括为:
  
  对于k•π/2±α(k∈Z)的个三角函数值,
  
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
  
  (奇变偶不变)
  
  然后在前面加上把α看成锐角时原函数值的符号。
  
  (符号看象限)
  
  例如:
  
  sin(2π-α)=sin(4•π/2-α),k=4为偶数,所以取sinα。
  
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
  
  所以sin(2π-α)=-sinα
  
  上述的记忆口诀是:
  
  奇变偶不变,符号看象限。
  
  公式右边的符号为把α视为锐角时,角k•360°+α(k∈Z),-α、180°±α,360°-α
  
  所在象限的原三角函数值的符号可记忆
  
  水平诱导名不变;符号看象限。
  
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
  
  这十二字口诀的意思就是说:
  
  第一象限内任何一个角的四种三角函数值都是“+”;
  
  第二象限内只有正弦是“+”,其余全部是“-”;
  
  第三象限内切函数是“+”,弦函数是“-”;
  
  第四象限内只有余弦是“+”,其余全部是“-”.
  
  上述记忆口诀,一全正,二正弦,三正切,四余弦
  
  其他三角函数知识:
  
  同角三角函数基本关系
  
  ⒈同角三角函数的基本关系式
  
  倒数关系:
  
  tanα•cotα=1
  
  sinα•cscα=1
  
  cosα•secα=1
  
  商的关系:
  
  sinα/cosα=tanα=secα/cscα
  
  cosα/sinα=cotα=cscα/secα
  
  平方关系:
  
  sin^2(α)+cos^2(α)=1
  
  1+tan^2(α)=sec^2(α)
  
  1+cot^2(α)=csc^2(α)
  
  同角三角函数关系六角形记忆法
  
  六角形记忆法:(参看图片或参考资料链接)
  
  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
  
  (1)倒数关系:对角线上两个函数互为倒数;
  
  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
  
  (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
  
  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
  
  两角和差公式
  
  ⒉两角和与差的三角函数公式
  
  sin(α+β)=sinαcosβ+cosαsinβ
  
  sin(α-β)=sinαcosβ-cosαsinβ
  
  cos(α+β)=cosαcosβ-sinαsinβ
  
  cos(α-β)=cosαcosβ+sinαsinβ
  
  tanα+tanβ
  
  tan(α+β)=——————
  
  1-tanα•tanβ
  
  tanα-tanβ
  
  tan(α-β)=——————
  
  1+tanα•tanβ
  
  倍角公式
  
  ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
  
  sin2α=2sinαcosα
  
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  
  2tanα
  
  tan2α=—————
  
  1-tan^2(α)
  
  半角公式
  
  ⒋半角的正弦、余弦和正切公式(降幂扩角公式)
  
  1-cosα
  
  sin^2(α/2)=—————
  
  2
  
  1+cosα
  
  cos^2(α/2)=—————
  
  2
  
  1-cosα
  
  tan^2(α/2)=—————
  
  1+cosα
  
  万能公式
  
  ⒌万能公式
  
  2tan(α/2)
  
  sinα=——————
  
  1+tan^2(α/2)
  
  1-tan^2(α/2)
  
  cosα=——————
  
  1+tan^2(α/2)
  
  2tan(α/2)
  
  tanα=——————
  
  1-tan^2(α/2)
  
  万能公式推导
  
  附推导:
  
  sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
  
  (因为cos^2(α)+sin^2(α)=1)
  
  再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
  
  然后用α/2代替α即可。
  
  同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
  
  三倍角公式
  
  ⒍三倍角的正弦、余弦和正切公式
  
  sin3α=3sinα-4sin^3(α)
  
  cos3α=4cos^3(α)-3cosα
  
  3tanα-tan^3(α)
  
  tan3α=——————
  
  1-3tan^2(α)
  
  三倍角公式推导
  
  附推导:
  
  tan3α=sin3α/cos3α
  
  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
  
  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
  
  上下同除以cos^3(α),得:
  
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
  
  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
  
  =2sinαcos^2(α)+(1-2sin^2(α))sinα
  
  =2sinα-2sin^3(α)+sinα-2sin^2(α)
  
  =3sinα-4sin^3(α)
  
  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
  
  =(2cos^2(α)-1)cosα-2cosαsin^2(α)
  
  =2cos^3(α)-cosα+(2cosα-2cos^3(α))
  
  =4cos^3(α)-3cosα
  
  即
  
  sin3α=3sinα-4sin^3(α)
  
  cos3α=4cos^3(α)-3cosα
  
  三倍角公式联想记忆
  
  记忆方法:谐音、联想
  
  正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
  
  余弦三倍角:4元3角减3元(减完之后还有“余”)
  
  ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
  
  和差化积公式
  
  ⒎三角函数的和差化积公式
  
  α+βα-β
  
  sinα+sinβ=2sin—----•cos—---
  
  22
  
  α+βα-β
  
  sinα-sinβ=2cos—----•sin—----
  
  22
  
  α+βα-β
  
  cosα+cosβ=2cos—-----•cos—-----
  
  22
  
  α+βα-β
  
  cosα-cosβ=-2sin—-----•sin—-----
  
  22
  
  积化和差公式
  
  ⒏三角函数的积化和差公式
  
  sinα•cosβ=0.5[sin(α+β)+sin(α-β)]
  
  cosα•sinβ=0.5[sin(α+β)-sin(α-β)]
  
  cosα•cosβ=0.5[cos(α+β)+cos(α-β)]
  
  sinα•sinβ=-0.5[cos(α+β)-cos(α-β)]
  
  和差化积公式推导
  
  附推导:
  
  首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
  
  我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
  
  所以,sina*cosb=(sin(a+b)+sin(a-b))/2
  
  同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
  
  同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
  
  所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
  
  所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
  
  同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
  
  这样,我们就得到了积化和差的四个公式:
  
  sina*cosb=(sin(a+b)+sin(a-b))/2
  
  cosa*sinb=(sin(a+b)-sin(a-b))/2
  
  cosa*cosb=(cos(a+b)+cos(a-b))/2
  
  sina*sinb=-(cos(a+b)-cos(a-b))/2
  
  好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
  
  我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
  
  把a,b分别用x,y表示就可以得到和差化积的四个公式:
  
  sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
  
  sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
  
  cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
  
  cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
  
  • 上一个数学:

  • 下一个数学:

  • 数学宝塔的思维延伸

    “±1”的妙用

    用拼图证明四边形“等周问题”

    动物皮毛上的斑点和条纹的数学特

    玩转数学之化动为静巧解含参不等

    初二数学期末备考攻略

    数学教学过程化的策略

    高二数学知识点总结之椭圆、双曲

    f(x)=1与g(x)=cos2x+sin2x  相等

    多角度几何问题的线段关系

    走近条件变化的圆问题

    关于向量的除法(2)
    数学教学教研
    自然地理
    普通自然地理[今日地理]报告称智利8.8级地震后国土增加
    普通自然地理[今日地理]湖北民间拟搜寻神农架“野人”
    普通自然地理[今日地理]欧洲首次发现捕鱼蝙蝠
    普通自然地理[世界地理]贵州织金县城多处地陷 数十户居
    宇宙奥秘
    [航空航天]月球正在变小——十亿年直径减
    [航空航天]“阿特兰蒂斯”号航天飞机与空
    [航空航天]天文学家首次目睹太阳系外行星
    [宇宙探索]美国宇航员三角恋险引发谋杀 N
    未解之谜
    [未解之谜新闻]克罗地亚渔夫捕获90公斤重超大
    [UFO飞碟]武汉农民舒满胜在家门前自制UF
    [UFO飞碟]美曾想联合苏联一起登月 以UFO
    [未解之谜新闻]科学剖析“濒死体验”:试图揭
    生命科学
    [人体的奥秘]为什么头发会脱落?
    [生物*医学]曝光秘制“胎盘胶囊”加工内幕
    [生物*医学]高科技纹身电子皮肤能有效监控
    [生物*医学]多个知名服装品牌质量不合格 杰
    动物世界
    [动物趣味知识]一片羽毛属于什么舞种 
    [动物世界]俄罗斯棕熊怀抱油桶爱不释手
    [动物世界]加拿大养鸡场防范禽流感有妙招
    [动物趣味知识]请问这只动物的学名 
    科普文章
    [化学实验]论利用化学实验 激发学习动力
    [趣味数学]史上有趣数学难题
    [医药健康]研究找出三组急性髓性白血病因
    [工程材料]稀土掺杂半导体纳米晶研究获进
    [化学学科信息]初中化学多种媒体教学与素质教
    [化学教学教研]钠的化合物教学案例
    设为首页 | 加入收藏 | 联系我们 | 友情链接 | 使用本站前必读
    Copyright © 2007 - 2013 科普之友( www.kepu365.com ) Corporation, All Rights Reserved