(4)我们一定能够在一个每边都是2单位长的正方形板上适当的钉上9根钉,使它们之中不存在有两根钉的距离是小于1单位。
(5)(英国数学奥林匹克1975年的问题)在一个半径为1单位的圆板上钉7个钉,使得没有两个钉的距离是大过或等于1,那么这7个钉一定会有一个位置恰好是在圆心上。
(6)任意6个人在一起,一定会有其中两种情形之一发生:第一种情形──有3个人互相认识。第二种情形──有3个人,他们之间完全不认识。
(7)(a)你能不能在从1到200的整数里挑选出100个自然数,使到任何其中之一不能整除剩下的99个数。
(b)证明如果在从1到200间随便取101个自然数,那么一定最少有两个自然数,其中之一能整除另外的数。
(8)随便给出10个10位数的数字,我们一定能把它分成两部分,使到每一部分的整数的和是等于其他一部分的整数的和。
上一页 [1] [2] [3] [4]
|