哪种投票制度最合理 |
|
|
来源:不详 更新时间:2011-11-24 11:55:53 |
|
|
河弯弯曲曲地延伸。我们很容易把它改合理一些。”。
“但是给最大的地区再加几票不可能帮助最小的地区获得一份权力呀!”Hogg伤心地叫道。
Perks说:“恰恰相反,如果Sheepshire再多两票的话,你就会得到一份权力(见图1的右图)。”
“不错”,Penny边说边看着这些数字,“这同一个联盟共拥有33票中的17票;依然是最小的三个地区中的每一个都可以声称自己掌握着力量均势。”
“这真是妙极了”,Hogg说,“你给了Sheepshire更多的权力,其中部分权力却鬼使神差般地影响到我们。”
“不,Hogg。我们并没有给Sheepshire更多的权力——我们只是给他们更多的选票”,Penny吸了一口气说,“正如你说的那样,权力和选票并不是一回事。”
“怎么会是这样?”Perks问道,“如果权力不是选票,那它是什么?我需要知道这一点。权力赢得选举。”
“我认为你需要Banzhaf权力指数,先生”,Penny说,“JohnF.Banzhaf是乔治敦大学的一位法律专家。1965年他提出了在加权投票体制中衡量代表所拥有的权力的一种方法。他的设想是,一位代表可以通过加入一个看来要输掉的联盟使其转败为胜。或者背弃一个看来要获胜的联盟使其转胜为败而显示其权力。”
“这不是同一回事吗?”
“是同一回事,先生。如果你加入一个联盟,你同时也就背弃了由其他所有人组成的另一个联盟。所以我们只需要考虑一种情况就够了——比如说考虑建立一个获胜的联盟。假定某一位代表在联盟中起着关键性的作用:有了她则联盟赢得投票,失去她则联盟输掉投票。任何一位代表的Banzhaf权力指数就是她在其中恰好起着这样一种作用的联盟的数目。”
“我们原先的投票体制是一个(16;10,9,7,3,1,1)体制。获得多数所需的票数为16票。各人代表的加权为10,9,7,3,1和1。Porkney仅能在恰好有16票的联盟中起着关键作用。如果这种联盟有更多选票,那么Porkney是否背弃它对投票结果不会有任何影响。如果其票数少于16票,则它就不是一个获胜联盟了。但是Porkney所属的任何一个联盟其选票总数均不等于16票,因此Porkney的权力指数为零。按照总统提出的新方案,我们将有一个(17;12,9,7,3,1,1)投票体制。Porkney在其所属的任何一个恰好有17票的联盟中起着关键作用。这种联盟正好有一个,即由Sheepshire,Fiddlesex,Slurrey和Porkney组成的联盟。因此,Porkney的权力指数为2。”
“那么Sheepshire的权力指数为多少?”Perks问。
“Sheepshire有12票,因此它在它加入的任何一个拥有17票到28票(即17-1+12票),的联盟中起着关键作用。你可以通过试错法列出这些联盟(见图2)。这种联盟共有18个,因此Sheepshire的权力指数为18。”
Hogg叫了起来:“Sheepshire的人口是我们的人口的12倍,可他们的权力却只有我们的权力的9倍。”
Gerry问道:“有没有比试错法更好的计算权力指数的方法呢?”
Penny说:“嗯,对于大的投票体系,最好的办法是使用计算机。不过,对于小的投票体系(比如我们这一个),有一种巧妙的图解法。假定此体系是(3;2,1,1),这就是说,有三位投票人:A,B和C。A有两票,B和C各有一票,且3票构成多数。”
“首先画出一个显示出所有可能的联盟的点阵图;如果这些联盟仅相关一个成员,则把它们用一条边联接起来。在每条边上标以非两个联盟所共有的那个成员。然后标出每一条关键的边——也说是总票数从低于多数票变成等于多数票或高于多数票的那些边。任何一位成员的权力指数就是其上标有它的名字的那些边的数目。在这个例子中,A出现在3条关键边上,因此它的权力指数为3;B和C则各出现在一条关键边上,因此其权力指数均为1。这个点阵图是个立方体。对于更大的系统,你也可以画出点阵图,但是看起来就有点零乱了。不过四个成员的点阵图还是有点漂亮的(见图3)。”
上一页 [1] [2] [3] 下一页
|
上一个数学: 数学与自然 下一个数学: 雪花曲线 |
|
|
|
|