各门科学的数学化 |
|
|
来源:不详 更新时间:2011-12-11 21:35:34 |
|
|
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学。它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
同其他科学一样,数学有着它的过去、现在和未来。我们认识它的过去,就是为了了解它的现在和未来。近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和。预计未来的数学成就每“翻一番”要不了10年。所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的。
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程。
例如物理学,同学们早就知道它与数学密不可分。在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了。
又如化学,要用数学来定量研究化学反应。把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应。这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动。这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象。这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学。这使得生物学获得了重大的成就。
谈到人口学,只用加减乘除是不够的。我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的。事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样。这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述。研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等。
还有水利方面,要考虑海上风暴水源污染、港口设计等,也是用方程描述这些问题,再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务。这里要用到很高深的数学。
谈到考试,同学们往往认为这是用来检查学生的学习质量的。其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的。现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量。只有质量合格的考试才能有效地检测学生的学习质量。
至于文艺、体育,也无一不用到数学。我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”。然后就剩下的分数计算平均分,作为这位演员的得分。从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉。这一切都包含着数学道理。
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造。”我们在这里所说的,正是第三种发明创造。“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂。”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用。可以预见,科学越进步,应用数学的范围也就越大。一切科学研究在原则上都可以用数学来解决有关的问题。可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域。
|
上一个数学: 老木工的算理 下一个数学: 特殊情况能得出一般结论吗? |
|
|
|
|