魅力无穷的完全数 |
|
|
来源:不详 更新时间:2012-8-5 10:14:19 |
|
|
中n是素数,2n-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆定理。有了欧几里得与欧拉两个互逆定理,公式2n-1(2n-1)成为判断一个偶数是不是完全数的充要条件了。
欧拉研究“梅森猜测”后指出:“我冒险断言:每一个小于50的素数,甚至小于100的素数使2n-1(2n-1)是完全数的仅有n取2,3,5,7,13,17,19,31,41,47,我从一个优美的定理出发得到了这些结果,我自信它们具有真实性。”
1772年,欧拉因过度拼命研究双目已经失明了,但他仍未停止研究,他在致瑞士数学家丹尼尔的一封信中说:“我已经心算证明n=31时,230(231-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。
欧拉定理和他发现的第8个完全数的方法,使完全数的研究发生了深刻变化,可是,人们仍不能彻底解决“梅森猜测”。
1876年,法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新方法给研究完全数者带来生机,同时也动摇了“梅森猜测”。因数学家借助他的方法发现猜测中n=67,n=257时不是完全数。
在以后1883——1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。
至此,人们前仆后继,不断另辟新路径,创造新方法,用笔算纸录,耗时二千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2n-1(2n-1)是完全数。
笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”历史证实了他的预言。
从1952年开始,人们借助高性能计算机发现完全数,至1985年才找到18个,多么可怜!
等待揭穿之谜
迄今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测:存不存在奇数完全数。
1633年11月,法国数学家笛卡尔给梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ2的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。它成为世界数论又一大难题。
虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。有多大呢?远的不说,当代大数学家奥尔检查过1018以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于1036,这是一个37位数;1972年,有人证明它必大于1050;1982年,有人证明,它必须大于10120;……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。
对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!
关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个?存在不存在奇完全数?
人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1;对于496有,4+9+6=19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?
以上这些难题,与其它数学难题一样,有待人们去攻克。尽管我们现在还看不到完全数的实际用处,但它反映了自然数的某些基本规律。探索自然规律,揭开科学上的未知之谜,正是科学追求的目标。(来源:数苑)
上一页 [1] [2]
|
上一个数学: 最美数学结构:共248维 下一个数学: 内部均匀无重物的不倒翁数学工艺形体 |
|
|
|
|