(CarlGustavJacobJacobi)和高斯(CarlFriedrichGauss),让他们就这些数学定理公开发表意见,以便让更多的人意识到这个数学理论的重要性。
谢瓦利埃遵照伽罗瓦的遗愿,将论文手稿寄给了雅可比和高斯,不过都没有收到回音。直到1843年,数学家刘维尔(JosephLiouville)才肯定了伽罗瓦的研究成果,并把它们发表在了他自己主办的《纯数学与应用数学杂志》(JournaldeMathématiquesPuresetAppliquées)上。人们把伽罗瓦的整套数学思想总结为了“伽罗瓦理论”。伽罗瓦用群论的方法对代数方程的解的结构做出了独到的分析,多项式方程的根、尺规作图的不可能性等一系列代数方程求解问题都可以用伽罗瓦理论得到一个简洁而完美的解答。伽罗瓦理论对今后代数学的发展起到了决定性的作用。
塞凯赖什夫妇的故事
1933年,匈牙利数学家乔治·塞凯赖什(GeorgeSzekeres)还只有22岁。那时,他常常和朋友们在匈牙利的首都布达佩斯讨论数学。这群人里面还有同样生于匈牙利的数学怪才——保罗·埃尔德什(PaulErdős)大神。不过当时,埃尔德什只有20岁。
在一次数学聚会上,一位叫做爱丝特·克莱恩(EstherKlein)的美女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。于是,美女同学得意地宣布了她的证明:这五个点的凸包(覆盖整个点集的最小凸多边形)只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。
平面上五个点的位置有三种情况
众人大呼精彩。之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于1935年发表论文,成功地证明了一个更强的结论:对于任意一个正整数n≥3,总存在一个正整数m,使得只要平面上的点有m个(并且任意三点不共线),那么一定能从中找到一个凸n边形。埃尔德什把这个问题命名为了“幸福结局问题”(HappyEndingproblem),因为这个问题让乔治·塞凯赖什和美女同学爱丝特·克莱恩之间迸出了火花,两人越走越近,最终在1937年6月13日结了婚。
对于一个给定的n,不妨把最少需要的点数记作f(n)。求出f(n)的准确值是一个不小的挑战。由于平面上任意不共线三点都能确定一个三角形,因此f(3)=3。爱丝特·克莱恩的结论则可以简单地表示为f(4)=5。利用一些稍显复杂的方法,我们可以证明f(5)等于9。2006年,利用计算机的帮助,人们终于证明了f(6)=17。对于更大的n,f(n)的值分别是多少?f(n)有没有一个准确的表达式呢?这是数学中悬而未解的难题之一。几十年过去了,幸福结局问题依旧活跃在数学界中。
不管怎样,最后的结局真的很幸福。结婚后的近70年里,他们先后到过上海和阿德莱德,最终在悉尼定居,期间从未分开过。2005年8月28日,乔治和爱丝特相继离开人世,相差不到一个小时。(来源:果壳网)
上一页 [1] [2]