聪明人喜谈发现,蛮横者无理杀人 |
|
|
来源:不详 更新时间:2012-8-28 12:19:38 |
|
|
上回说到泰勒斯与一群人在金字塔下议论,到底世界是甚么。有的说是水,有的说是气。不料更有怪者,数年后他的一个学生却说世界是“数”。这个学生叫毕达哥拉斯(前572-492)。当他在希腊出生的时候,东方的释迦牟尼正在印度讲佛,中国的孔子正在春秋各国讲道。
毕达哥拉斯从小就极聪明,一次他背着柴禾从街上走过,一位长者见他那捆柴禾的捆法与别人不同,便说“这孩子有数学奇才,命该成为一个大学者。”他闻听此言,便摔掉柴捆南渡地中海到泰勒斯门下去求学。真是名师出高徒,毕达哥拉斯本就极聪慧,经泰勒斯一指点,当时许多数学难题在他的手下便迎刃而解。比如,他证明了三角形的内角和等于180度;算出你要用瓷砖铺地,则只有用正三角、四角、六角三种正多角砖才能刚好将地铺满;证明了世界上只有五种正多面体,即:4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数、直到毕达哥拉斯数。但他最伟大的成就要算是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理)。即:以直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积:a2+b2=c2。据说,这是当时毕达哥拉斯在寺庙里见匠人用方砖铺地,常要计算面积,于是便发明了此法。
这定理是提出来了,用起来也确实方便,但是怎么从理论上加以证明呢?
正是:
毕氏无心一道题,费尽后人多少力。
自从这个定理问世以来,东西方不知有多少数学家来设法证明,真是百花齐放,各有所妙。这都是后话。我国在清朝初年有一位数学家叫梅文鼎(1633-1721),他发明的一种证法却极简便,只需用一张硬纸,剪上几刀,一并就知,列位如有兴趣不妨一试。
再说这毕达哥拉斯将那数学知识运用得纯熟之后,觉得这实在是一套了不得的本事,不能只满足于用数来算题解题,于是他要试着从数学扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。毕达哥拉斯还在自己的周围建立了一个青年兄弟会,入会者都要宣誓不把知识泄露给外人,这样他才肯向他们传授数学。可见当时才萌芽的数学是多么神秘。毕达哥拉斯死后大约50年间,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。
这天,学派的成员们刚开完一个学术讨论会,正坐着游船出来领略一下山水风光,以驱散一天的疲劳。这地中海海滨,蓝色的海湾环抱着品都斯山;长长的希腊半岛伸进海面,就像明亮的镜子上镶着一粒珍珠。这天,风和日丽,海风轻轻吹来,荡起层层波浪,大家心里好不高兴。一个满脸胡子的学者看着广阔的海面兴奋地说:“毕达哥拉斯先生的理论一点不错,你们看这海浪一层一层,波峰波谷,就好像奇数、偶数相间一样,世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。”
“我看不一定。”这时船尾的一个学者突然发话了,他沉静地说:“要是量到最后,不是整数呢?”
“那就是个小数。”
“要是这个小数既除不尽,又不能循环呢?”
“不可能,世界上的一切东西,都可以相互用数直接准确地表达。”
这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示。就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。”
这个学者叫希帕索斯,他在毕达哥拉斯学派中是一个聪明、好学、很有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,不可能,先生的理论置之四海皆准。”希帕索斯眨了眨一双聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说:
“如果直边是3,斜边是几?”
“4”
“再准确些?”
“4.2”
“再准确些?”
[1] [2] 下一页
|
上一个数学: 洞庭湖边屈原问天,金字塔下泰氏说地 下一个数学: 大千世界的语言—叮叮咚咚的数 |
|
|
|
|