梅森素数:千年不休的探寻之旅 |
|
|
来源:不详 更新时间:2012-9-10 15:00:56 |
|
|
家柯尔在美国数学学会的大会上作了一个报告。他先是专注地在黑板上算出267-1,接着又算出193707721×761838257287,两个算式结果完全相同!换句话说,他成功地把267-1分解为两个素数相乘的形式,从而证明了M67是个合数。
报告中,他一言未发,却赢得了现场听众的起立鼓掌,更成了数学史上的佳话。阅读这段历史,我们懂得了什么叫做“事实胜于雄辩”。记者好奇地问他是怎样得到这么精彩的发现的,柯尔回答“三年里的全部星期天”。他后来当选为美国数学协会的会长,去世后,该协会专门设立了“柯尔奖”,用于奖励作出杰出贡献的数学家。
1922年,数学家克莱契克验证了M257并不是素数,而是合数(但他没有给出这一合数的因子,直到20世纪80年代人们才知道它有3个素因子)。
于是乎,梅森的四个猜测获得了两正确、三遗漏和两错误的成绩,但这无损于他的光荣。在千年的探寻之旅中,伟大如欧拉也会犯错误,他在1750年宣布说找到了梅森的“遗漏”:M41和M47也是素数,但最终上M41和M47都不是素数。
直到1947年,对于p≤257的梅森素数Mp的正确结果才被确定,也就是当p=2,3,5,7,13,17,19,31,61,89,107和127时,Mp是素数。现在这个表已经被反复验证,一定不会有错误了。
我们看到,在手工计算的时代,人们一共找到了12个梅森素数。
计算机!计算机!
1930年,美国数学家雷默改进了鲁卡斯的工作,给出了一个新的测试方法,即鲁卡斯-雷默方法。很快地,计算机时代到来了,这一方法发挥了重要的作用。1952年,数学家鲁滨逊(Robinson)等人将鲁卡斯-雷默方法编译成计算机程序,使用SWAC型计算机在短短几小时之内,就发现了第13个、第14个,并在当年总共找到了5个梅森素数:M521、M607、M1279、M2203和M2281。
其后,M3217在1957年被黎塞尔(Riesel)证明是素数;M4253和M4423在1961年被赫维兹(Hurwitz)证明是素数。
1963年,美国数学家吉里斯(Gillies)证明M9689和M9941是素数,这已经是第21和22个梅森素数。1963年9月6日晚上8点,当吉里斯通过大型计算机找到第23个梅森素数M11213时,美国广播公司(ABC)中断了正常的节目播放,第一时间发布了这一重要消息,发现这一素数的美国伊利诺伊大学数学系全体师生更是激动地把所有从系里发出的信件都敲上了“211213-1是个素数”的邮戳。
1971年3月4日晚,美国哥伦比亚广播公司(CBS)中断了正常节目播放,发布了布萊恩特•塔克曼(BryantTuckerman)使用IBM360-91型计算机找到新的梅森素数M19937的消息。而到1978年10月,世界几乎所有的大新闻机构(包括我国的新华社)都报道了以下消息:两名年仅18岁的美国高中生诺尔(Noll)和尼科尔(Nickel)使用CYBER174型计算机找到了第25个梅森素数:M21701。
超级计算机的引入加快了梅森素数的寻找脚步,但随着素数P值的增大,每一个梅森素数的产生都更加艰难,各国科学家及业余研究者们之间的竞争变得越来越激烈。在1979年2月23日,当美国克雷研究公司的计算机专家史洛温斯基和纳尔逊正兴致冲冲地宣布他们找到第26个梅森数M23209时,有人浇来一盆冷水:两星期前美国加州的高中生诺尔就已经给出了同样结果。心有不甘的他们又花了一个半月的时间“卧薪尝胆”,使用Cray-1型计算机找到了第27个梅森素数M44497,这件事成了当时不少报纸的头版新闻。
为了与美国人较量,英国的哈威尔实验室也专门成立了一个研究小组来寻找更大的梅森素数。他们用了两年时间,花了12万英镑的经费,于1992年3月25日找到了新的梅森素数M756839。但到了1994年1月14日,史洛温斯基等人为美国再次夺回发现“已知最大素数”的桂冠——这一梅森素数是M859433。史洛温斯基本人一共发现了7个梅森素数,他因上一页 [1] [2] [3] [4] [5] 下一页
|
上一个数学: 四个点,七座桥,健身路径上的数学难题 下一个数学: 拓扑学简介(三) |
|
|
|
|