有限单群:一段百年征程 |
|
|
来源:不详 更新时间:2012-9-19 16:05:08 |
|
|
1832年的某个清晨,革命中的法国见证了又一次决斗。在某个瞬间,某位青年被对手的枪射中腹部,随后去世。在当时狂热的政治斗争中,只有寥寥数人意识到,法国,甚至世界,又失去了另一个伟大的头脑。这位青年姓伽罗华,他的最大遗产围绕着一个数学概念:群。
在接下来的一百多年后,一群在世界各地的数学家,沿着这位青年开辟的路径,对有限群的结构进行了彻底的分析。其中的发现,可能出乎所有人的意料。
这是一个关于群的故事,这是一个关于单群的故事。
高度抽象的对称

交错群A_5的一个Cayley图(一种群的图示)
什么是群?一个数学家可能会给你这样的回答:
一个群是一个集合G以及在G上的一个运算·,满足以下三个条件:
1.存在一个G中的元素e,使得对于G中的任意元素x,有x=x·e=e·x。这样的e叫做群的单位元
2.对于G中的任意元素x,y,z,有(x·y)·z=x·(y·z),这是结合律
3.对于G中的任意元素x,存在G中的一个元素y,使得e=x·y=y·x。这样的y被称为x的逆元
这样的定义,即使是对一名刚进大学的数学系学生来说也稍显抽象。但数学的力量就在于它的抽象。它什么都不是,所以它什么都是。
整数和加法就构成一个群。什么数加上0都不变,所以0是单位元;a+(b+c)=(a+b)+c,这是小学的加法结合律;一个数加上它的相反数是单位元0,所以相反数就是逆元。正实数和乘法也构成一个群,1是它的单位元,乘法有结合律,倒数是逆元。如果我们认为9点+5点相当于9点的5个小时后,也就是2点的话,就连时钟也构成一个群。宝石的晶体构造,电脑的压缩校验算法,以至于魔方的还原,无不牵涉“群”这个概念。而对于自然界的各种对称性,群也是对其最自然的描述方式。难怪有人会说,群就是对称,研究群,就是研究各种对称性。
正是由于放弃了与现实的对应,像群这样的抽象数学概念才能在现实中获得广泛的对应。我们研究群,并不关心它的具体元素是什么,是x,y,z还是姬十三、猛犸、桔子都无所谓,只要知道元素通过运算产生的关系就够了,这就是群的全部。只要符合群的公理,能应用到x,y,z上的结论就能应用到姬十三、猛犸、桔子上,这就是抽象的力量。
超越时代的孤独

伽罗华的画像
也正由于这种抽象,群的概念在一开始并没有很快地被接受。
伽罗华是在研究一元五次方程的根式解时开始触及群的概念的。对于一元二次方程来说,我们可以将方程的所有解写成有关方程系数的一个根式(允许四则运算和开常数次方运算组成的式子),这称为方程的根式解。对于三次以及四次方程,也有这样的公式,可以直接从方程的系数得到方程的所有解。然而,对于五次以及更高次的方程来说,此前阿贝尔已经证明一般的公式并不存在。伽罗华要解决的,是判断何时存在这样的根式表达。
为了解决这个问题,他首次定义了群这种代数结构,仔细地研究了群的各种性质,以及它与更高级的一种代数结构——域——的关系,并以此发展了一套理论,完整地解决了这个问题。他写下了关于这套理论与高次方程根式解的备忘录,并将其递交到法兰西科学院。
他的不幸从此开始。
这份备忘录的评审人是柯西。虽然认识到了伽罗华工作的重要性,柯西却没有接受这份备忘录,而是建议伽罗华修改这份备忘录以竞逐科学院的数学奖。
伽罗华接受了这个建议,第二次提交了备忘录。
天意弄人,评审人傅里叶之后不久就逝世了,伽罗华的[1] [2] [3] [4] [5] 下一页
|
上一个数学: 纳什:无常命运中的美丽心灵 下一个数学: 数的创生之哈密尔顿的四元数 |
|
|
|
|