解答数学“大问题”——证明费马大定理的故事 |
|
|
来源:王丹红 更新时间:2009-9-29 13:56:55 |
|
|
为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却
壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用13
0页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。
费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达
哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,
斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在
研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n
大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这
个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空
白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。费马制造了
一个数学史上最深奥的谜。
大问题
在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不
解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,
文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最
值得为之奋斗的事。
安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯
已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,
编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。
”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答
,怀尔斯被吸引住了。
这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又
一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆
起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解
决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永
远不会放弃它。我必须解决它。”
怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare
学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能
带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coate
s)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事
告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其
为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的
思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研
究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任
是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究
生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定
是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他
的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。
”
科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的
一个转折点,椭圆方程的研究是他实现梦想的工具。
孤独的战士
1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学
的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一
个著名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马
大定理的任务也是极为艰巨的。
在怀尔[1] [2] [3] 下一页
|
上一个科学人物: 爱因斯坦相信传心术和唯灵论吗? 下一个科学人物: 信封里的爱因斯坦 |
|
没有任何图片科学人物 |
|
|
科学家故事 |
没有任何图片科学人物 |
|
|
|
|
|
|
|
|
|
|
|
|
|