TOR抑制和能量限制何以延长这么多动物的寿命时,科学家碰到了一个长期存在的谜题:为什么动物会进化出一些抵抗衰老的机制?
这个问题曾让进化生物学家很头疼,因为当一个物种的成员常因掠食者、感染、意外事故而丧失生命时,自然选择的作用是让生物体更好地繁衍后代,而不是让器官永葆活力。面对种种外在危险,进化会让生物体有较长的存活时间,在死亡之前有机会繁衍后代。完成繁殖任务后,生物体存在的必要性就会大打折扣,它们会像一座被遗弃的旧宅一样,功能迅速退化。但是,能量限制可在多个物种的“晚年”时延长它们的寿命,这说明该方法触发了一种古老而保守的机制,这种机制应该是形成于自然选择过程中,可以在特定环境下延缓衰老。
对于这个看似矛盾的现象,一种广泛流传的解释是,在食物缺乏的阶段,能量摄入减少会触发一种饥饿反应,中断生物体的衰老进程,以使生命延续,在环境好转时完成繁殖。不过,奥斯塔德却不认可这种说法,他认为现在没有证据表明,能量摄入较少会让野生动物存活更久,这种现象只有在实验室中,在过度喂养的动物中可以看到。饥饿会使本已瘦弱不堪的野生动物更加虚弱,很快死去,根本没法等到延缓衰老的基因发挥作用,更别提把这些基因传给后代,进化出一种饥饿反应机制了。
一些老年医学家给出的另一种解释似乎更合理:限制能量摄入会引发一些生理反应,这些反应在进化中出现的目的其实与衰老无关,寿命延长不过是一种副反应而已。奥斯塔德认为,在食物缺乏的时期,动物会四处觅食,吃下一些非常规食物,因而很可能会摄入正常饮食所没有的毒素。这种艰难的觅食行为可能催生了一种内在的毒素防御机制:当饥饿来袭,细胞就会启动应激机制和自我修复程序,这在无意中延缓了衰老。
几年前,美国罗斯威尔·帕克癌症研究所(Roswell Park Cancer Institute)的米哈伊尔·V·布拉格斯克隆尼(Mikhail V. Blagosklonny)分析了TOR蛋白的相关研究后,他认为能量限制之所以有如此效果,是因为一个“意外”。布拉格斯克隆尼是俄罗斯科学家,在癌症研究和细胞生物学领域均有涉足,他的看法源自一个看似矛盾的观点:动物年轻时不可或缺的生长能力,到了晚年却会将我们拖进坟墓。他认为,能量限制会延长寿命的原因是,它阻断了把生物体拖向坟墓的生长途径,而在这条生理途径中,TOR蛋白是最重要的一环。
布拉格斯克隆尼的核心思想是,作为生长、繁殖的关键要素,TOR蛋白在生物体发育成熟后,会推动衰老进程。一方面,它传递生长信号,引起动脉壁的平滑肌细胞增殖(动脉粥样硬化的关键步骤)、脂肪积累(有可能诱发全身性炎症)、胰岛素耐受(糖尿病)、破骨细胞增生(骨质破坏)、肿瘤生长;另一方面,它会抑制自噬作用,使蛋白质和无功能的线粒体异常聚集,释放自由基损伤DNA,并破坏细胞的能量代谢系统。此外,神经元内会有一些难以降解的蛋白质聚集在一起,导致阿尔茨海默病等多种神经退行性疾病。布拉格斯克隆尼的研究已经表明,在生命晚期,TOR蛋白传递的信号能加速细胞衰老,并通过细胞间的相互作用损伤邻近细胞,削弱组织的自我修复能力。
综上所述,布拉格斯克隆尼认为,在进化过程中,生物体并没有产生延缓衰老的机制,雷帕霉素、能量限制、基因突变会延长生物体的寿命,仅仅是自然界发生的意外——它们恰好干扰了被布拉格斯克隆尼称为“异常生长”的衰老过程,使这个过程慢于正常进度。实际上,从TOR信号通路的种种表现来看,它很像是一个衰老程序,尽管它在生命之初的作用是为了促进生长。尽管布拉格斯克隆尼的理论很新颖,但他提出这个理论的灵感之一,却来源于一个早已为人熟知的假说。1957年,已故进化生物学家乔治·威廉姆斯(George Williams)提出,衰老是由一些具有双重作用的基因诱发——在生命早期,这些基因对生长很有帮助,但到了晚期却会危害健康。“双面基因”很受进化的青睐, 因为“在任何时候,只要发生利益冲突,自然选择都会优先照顾年轻而非年老的一方”。布拉格斯克隆尼认为,TOR基因就是这样一种“双面基因”。
与许多新理论一样,布拉格斯克隆尼的理论也备受争议。部分科学家认为,布拉格斯克隆尼太过强调TOR蛋白在促进生长上的作用,在他们看来,TOR蛋白的其他作用,比如抑制细胞的自噬过程(该过程会更新细胞组件),才是该基因推动衰老进程的关键因素。不过,有些科学家仍认为,布拉格斯克隆尼的理论还是比较合理的,巴塞尔大学的霍尔就说:“布拉格斯克隆尼勾勒出了别人都没见过的景象,我倾向于认为,他是正确的。”
寻找人类的“雷帕霉素”
如果TOR蛋白是衰老的加速器,我们有什么办法阻
上一页 [1] [2] [3] [4] [5] 下一页