的最大寿限。然而,到了2009年年中,失望的阴影一扫而空:由美国国家老年研究所(NIA)资助的三个实验室联合报道称,在三个平行实验中,雷帕霉素(当时已经知道,这种物质具有抑制细胞生长的作用)可使小鼠的最大寿限延长12%。而且,研究人员惊奇地发现,一些年老病残的小鼠用药后,平均存活期竟也延长了三分之一,而科学家本来以为,这部分小鼠可能对药物不起反应。
雷帕霉素突破了哺乳动物的寿命界限,这使科学家注意到一个大概已经存在了10亿年的生理机制:该机制似乎可以调控小鼠和其他哺乳动物的衰老过程——这个“其他”,可能也包括人类。这一机制的核心要素是TOR蛋白(target of rapamycin,即雷帕霉素的目标蛋白)以及编码该蛋白的基因(TOR基因)。TOR蛋白是当今老年医学和药学的重点关注对象,因为越来越多的动物及临床实验表明,抑制哺乳动物细胞中的TOR蛋白(即mTOR)的活性,能降低多数老年相关疾病的发病风险,比如癌症、阿尔茨海默病、帕金森病、心肌退行性病变、Ⅱ型糖尿病、骨质疏松、黄斑变性等。也就是说,只要找到一种药物,能安全有效地抑制mTOR蛋白的活性,那么它就能延缓人类的衰老进程,就像雷帕霉素在小鼠中的作用一样,这在预防医学上有着极其重大的意义(尽管雷帕霉素能延长小鼠及其他物种的寿命,但遗憾的是,雷帕霉素本身的副作用决定了它可能无法用于人类)。
在此之前,科学家也曾对作用于其他分子的药物寄予过厚望,特别是sirtuins,那么mTOR蛋白与这些分子有什么不同?由于作用于mTOR蛋白的药物能有效延长哺乳动物的最大寿限,这不仅证实了,mTOR蛋白在哺乳动物的衰老过程中起着关键作用,更重要的是,这还说明科学家减缓衰老进程的梦想,与成功已经前所未有的接近。“在今天乃至今后10年,TOR蛋白可能都是科学家最大的希望所在,”美国杰克逊实验室的老年医学专家、雷帕霉素小鼠实验的研究者之一凯文•福勒基(Kevin Flurkey)说。
从土壤开始
当年,斯科利纳探险回来后,就把土壤样本移交给了美国惠氏药厂(Ayerst)的实验室,TOR的发现之旅也由此开始。只不过,最初的研究并不是针对TOR蛋白在衰老过程中的作用,而是为了开发抗生素——从上世纪40年代起,制药厂商的研究人员一直在土壤中分离细菌,寻找抗生素。因此,当惠氏药厂的研究人员拿到斯科利纳的土壤样本后,也开始从中筛选可分泌抗生素的微生物。
1972年,他们筛选出一种可以抑制真菌的物质,由于复活岛在当地也叫“雷帕岛”,因此将这种物质命名为“雷帕霉素”。惠氏药厂起初希望,用雷帕霉素来治疗酵母菌感染(常见于阴道感染)。但是,研究人员在细胞培养实验中,以及针对动物免疫系统所做的研究发现,雷帕霉素会阻止免疫细胞增殖,从而抑制器官移植后的免疫排斥反应。1999年,美国食品及药品管理局(FDA)批准雷帕霉素作为免疫抑制剂用于肾移植。而且在上世纪80年代,研究人员还发现,雷帕霉素可以抑制肿瘤生长,因此自2007年起,它的两种衍生物——辉瑞公司的坦罗莫司(temsirolimus,也叫特癌适)和诺华公司的依维莫司(everolimus),经批准用于治疗多种癌症。
发现了雷帕霉素对酵母和人类细胞的增殖都有抑制作用之后,生物学家非常兴奋,因为这一现象暗示,虽然从进化上看,酵母和人类之间有十亿年的差距,但这两个物种肯定存在某种相同的生长调控基因——这类基因非常“保守”,经过如此长时间的进化都未发生改变。1991年,瑞士巴塞尔大学的迈克尔•N•霍尔(Michael N. Hall)和同事在酵母实验中,通过观察雷帕霉素的抑制作用,终于找到了两个这种古老的生长调控基因,分别命名为TOR1和TOR2。三年后,美国哈佛大学的斯图尔特•史克伯(Stuart Schreiber)和怀特黑德生物医学研究所的戴维•萨巴蒂尼(David Sabatini)又分别在哺乳动物中找到了TOR基因。现已知道,包括蠕虫、昆虫、植物在内的众多物种也有调控细胞生长的TOR基因。
20世纪90年代,科学家对TOR基因在细胞和整个动物机体中的作用有了更多的了解——其中有很多作用都被证实与衰老有关。值得一提的是,他们发现,TOR基因编码的一种酶会在细胞质中与其他几种蛋白质结合,形成名为TORC1的蛋白复合物,调控细胞中多种与生长相关的生理活动,而雷帕霉素主要作用目标正是TORC1。还有一种复合物叫做TORC2,但现在对其了解较少。
科学家进一步研究证实,TOR基因能感知营养的变化情况:当食物充足时,TOR
上一页 [1] [2] [3] 下一页