什么是复杂应力 [编辑本段]应力的定义 应力定义为“单位面积上所承受的附加内力”。公式记为 其中,σ表示应力;δfj表示在j方向的施力;δai表示在i方向的受力面积。 因为面积与力都是矢量,如果受力面积与施力同方向则称正应力,如图1所示的σx与σy;如果受力面积与施力方向互相正交则称剪应力(shearstress),如图1所示的τxy与τyx。 “内应力[1]”指组成单一构造的不同材质之间,因材质差异而导致变形方式的不同,继而产生的各种应力。 当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变就称为应变(strain)。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力.把分布内力在一点的集度称为应力(stress),应力与微面积的乘积即微正向应力与剪应力内力.或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力(stress)。按照应力和应变的方向关系,可以将应力分为正应力σ和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。按照载荷(load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。 [编辑本段]应力的分类 正向应力与剪应力 同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。 有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。 物体受力产生变形时,体内各点处变形程度一般并不相同。用以描述一点处变形的程度的力学量是该点的应变。为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化。 [编辑本段]线应变 在直角坐标中所取单元体为正六面体时,三条相互垂直的棱边的长度在变形前后的改变量与原长之比,定义为线应变,用ε表示。一点在x、y、z方向的线应变分别为εx、εx、εy、εz。线应变以伸长为正,缩短为负。 [编辑本段]切应变 单元体的两条相互垂直的棱边,在变形后的直角改变量,定义为角应变或切应变,用γ表示。一点在x-y方向、y-z方向z-x方向的切应变,分加别为γxy、γyz、γzx。切应变以直角减少为正,反之为负。 [编辑本段]一点的应变状态 一点的应变分量εx、εy、εz、γxy、γyz、γzx已知时,在该点处任意方向的线应变,以及通过该点任意两线段间的直角改变量,都可根据应变分量的坐标变换公式求出。该点的应变状态也就确定。 表示一点应变状态的个应变分量εx、εy、εz、γxy、γyx、γyzγzy、γzx、γxz组成的应变张量,即 式中右边的张量中的切应变用εxy、εxz、---表示,适用于使用张量的附标标号的表示法; 左边张量中的切应变用γxy、γxz、---表示,是工程习惯表示法。 二者概念相同,大小相差一倍。应变张量也是二阶对称量,其中切应变分量εxy=εyx [编辑本段]测量工具 应力仪是来测定透明物体由于内应力而产生的双折射现象的仪器。这种双折射(应力)的来源,是由于均匀的冷却或外界机械作用等原因引起的。 是胡克定律吧 胡克定律是力学基本定律之一。适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。这个定律是英国科学家胡克发现的,所以叫做胡克定律。
胡克定律的表达式为f=kx,其中k是常数,是物体的倔强系数。在国际单位制中,f的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f=-kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。 为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。
prisonbreak里面说的是力学的胡克定律,这个是材料力学里面的知识点,具体计算起来比较复杂。记得以前看过一个记录片,关于爆破的方法,在一个实心的大块混凝土结构上,通过计算得出关键的受力点,然后在这几个受力点上打孔,接着放入引爆所需要的最少量的炸药,进行引爆,引爆的结果就是会导致混凝土爆炸影响范围最小,这种爆破方法就是通过精确的计算来决定爆破最好的效果,从而不会影响其他的附近的建筑物。
胡克定律 hook'slaw 材料力学和弹性力学的基本规律之一。由r.胡克于1678年提出而得名。胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=εε,式中e为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式: σ11=λ(ε11+ε22+ε33)+2gε11,σ23=2gε23, σ22=λ(ε11+ε22+ε33)+2gε22,σ31=2gε31,(1) σ33=λ(ε11+ε22+ε33)+2gε33,σ12=2gε12,及
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和g为拉梅常量,g又称剪切模量;e为弹性模量(或杨氏模量);v为泊松比。λ、g、e和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
根据无初始应力的假设,(f1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数f1对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为
上述关系式是胡克(hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。
广义胡克定律中的系数cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。 如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,cmn是坐标x,y,z的函数。 但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。 这一条件反映在广义胡克定理上,就是cmn为弹性常数。
郑玄-胡克定律 它是由英国力学家胡克(roberthooke,1635-1703)于1678年发现的,实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记·马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺。”以正确地提示了力与形变成正比的关系,郑玄的发现要比胡克要早一千五百年.因此胡克定律应称之为“郑玄——胡克定律.” 胡克定律 开放分类:物理学 胡克定律是力学基本定律之一。适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。这个定律是英国科学家胡克发现的,所以叫做胡克定律。 胡克定律的表达式为f=kx,其中k是常数,是物体的倔强系数。在国际单位制中,f的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力 弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一。在现代,仍然是物理学的重要基本理论。胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f=-kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。 为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体。 prisonbreak里面说的是力学的胡克定律,这个是材料力学里面的知识点,具体计算起来比较复杂。记得以前看过一个记录片,关于爆破的方法,在一个实心的大块混凝土结构上,通过计算得出关键的受力点,然后在这几个受力点上打孔,接着放入引爆所需要的最少量的炸药,进行引爆,引爆的结果就是会导致混凝土爆炸影响范围最小,这种爆破方法就是通过精确的计算来决定爆破最好的效果,从而不会影响其他的附近的建筑物。 胡克定律 hook'slaw 材料力学和弹性力学的基本规律之一。由r.胡克于1678年提出而得名。胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=εε,式中e为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式: σ11=λ(ε11+ε22+ε33)+2gε11,σ23=2gε23, σ22=λ(ε11+ε22+ε33)+2gε22,σ31=2gε31,(1) σ33=λ(ε11+ε22+ε33)+2gε33,σ12=2gε12,及 式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和g为拉梅常量,g又称剪切模量;e为弹性模量(或杨氏模量);v为泊松比。λ、g、e和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。 根据无初始应力的假设,(f1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数f1对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为
上述关系式是胡克(hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。 广义胡克定律中的系数cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。 如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,cmn是坐标x,y,z的函数。 但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。 这一条件反映在广义胡克定理上,就是cmn为弹性常数。
郑玄-胡克定律 它是由英国力学家胡克(roberthooke,1635-1703)于1678年发现的,实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记·马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺。”以正确地提示了力与形变成正比的关系,郑玄的发现要比胡克要早一千五百年.因此胡克定律应称之为“郑玄——胡克定律.” 胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f=-kx。k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。 各向同性材料的广义胡克定律有两种常用的数学形式: σ11=λ(ε11+ε22+ε33)+2gε11,σ23=2gε23, σ22=λ(ε11+ε22+ε33)+2gε22,σ31=2gε31,(1) σ33=λ(ε11+ε22+ε33)+2gε33,σ12=2gε12, 及式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和g为拉梅常量,g又称剪切模量;e为弹性模量(或杨氏模量);v为泊松比。λ、g、e和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题. 拿把刀在自己的手上磨! 刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。,,,,,,,拿把刀在自己的手上磨! ,刀刃是作用力,手是承受力的,刀在手上磨,手接触刀刃的的力就是接触应力。
|