阿基米德的贡献是什么? |
|
|
来源:N 更新时间:2010-5-4 |
|
|
伟大的科学家,阿基米德是那个国家的人?生活在那个年代?对人类做过那些有益的事情,给人类的科学发展事业奠定了什么基础? 阿基米德(archimedes,约前287~前212),古希腊最伟大的科学家,静力学和流体静力学的奠基人。也是具有传奇色彩的人物。 公元前287年,阿基米德出生于西西里岛(sicilia)的叙拉古(syracuse)(今意大利锡拉库萨)。他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。他十一岁时,借助与王室的关系,被送到古希腊文化中心亚历山大里亚城,跟随欧几里得的学生埃拉托塞和卡农学习,他以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。 亚历山大里亚位于尼罗河口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他在学习期间对数学、力学和天文学有浓厚的兴趣。在他学习天文学时,发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象。为解决用尼罗河水灌溉土地的难题,他发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。 公元前240年,阿基米德回叙拉古,当了赫农王的顾问,帮助国王解决生产实践、军事技术和日常生活中的各种科学技术问题。 公元前212年,古罗马军队攻陷叙拉古,正在聚精会神研究几何问题的阿基米德,不幸被蛮横的罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在几何学上的卓越贡献,并享有“数学之神”的称号。
阿基米德科学成就 阿基米德无可争议的是古代希腊文明所产生的最伟大的数学家及科学家之一,他在诸多科学领域所做出的突出贡献,为他赢得同时代人的高度尊敬,并用他的智慧颠覆人类历史。 力学方面: 阿基米德在力学方面的成绩最为突出。 1、在总结了关于埃及人用杠杆来抬起重物的经验的基础上,阿基米德系统地研究了物体的重心和杠杆原理。提出了精确地确定物体重心的方法,指出在物体的中心处支起来,就能使物体保持平衡;同时,他在研究机械的过程中,发现并系统证明了阿基米德原理(即杠杆定律),为静力学奠定了基础。此外,阿基米德利用这一原理设计制造了许多机械。 2、他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律其公式为:f浮=g排液=ρ液gv排液。 几何学方面: 阿基米德的数学成就在于他既继承和发扬了古希腊研究抽象数学的科学方法,又使数学的研究和实际应用联系起来。阿基米德 1、阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,类似于现代微积分中所说的逐步近似求极限的方法。 2、他是科学的研究圆周率的第一人。他提出用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法求圆周率。他求出了圆周率大小范围为:223/71<π<22/7。 3、面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。 4、提出了著名的阿基米德公理,用现代数学语言表述,阿基米德原理指对于任何自然数(不包括0)a、b,如果a<b,则必有自然数n,使n×a>b. 天文学方面: 1、他发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象; 2、他认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。 阿基米德螺旋永动机 重视实践: 阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、扬水机以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。 [编辑本段]【著作】 阿基米德流传于世的数学著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积。其体例深受欧几里德《几何原本》的影响,先是设立若干定义和假设,再依次证明。 作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》等数学著作;作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。 这些著作中《论球与圆柱》是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题 著作一览: 《数沙器》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:223/71<π<22/7,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷竭法。 《论球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的"阿基米德公理"。 《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。 《平行图形的平衡或其重心》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。 《论浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。书中他研究了旋转抛物体在流体中的稳定性。 《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。 《阿基米德方法》,是一封给埃拉托斯特尼的信,它主要讲根据力学原理去发现解决问题的方法。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。 《群牛问题》,含有八个未知数,最后归结为一个二次不定方程。最初是在一封给埃拉托塞尼的信中提出,但真实性颇值得怀疑,“群牛问题”大概很早以前就已存在,阿基米德只是重新研究而已。
阿基米德影响 阿基米德是数学家与力学家的伟大学者,并且享有“流体静力学之父”的美称。他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,并给出严格的证明,其中就有著名的"阿基米德原理"(杠杆原理)。 阿基米德 他在数学上也有着极为光辉灿烂的成就,特别是在几何学方面.他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的e.t.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两人通常是艾萨克·牛顿和卡尔·弗里德里希·高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。 除了艾萨克·牛顿和阿尔伯特·爱因斯坦,再没有一个人象阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达·芬奇和伽利略·伽利雷等人都拿他来做自己的楷模。 阿基米德(archimedes) 《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
8
|
上一个物理: 请问阿基米德的生平简介? 下一个物理: 阿基米德原理 |
|
|
|
力学 |
没有任何图片物理 |
|
|
|
|
|
|
|
|
|
|
|
|
|