谁能给我解释下开普勒第三定律? |
|
|
来源:N 更新时间:2010-7-9 |
|
|
开普勒(1571-1630年)是德国近代著名的天文学家、数学家、物理学家和哲学家。他将数学和天文观测结合起来,在天文学方面做出了巨大的贡献。开普勒是继哥白尼之后第一个站出来捍卫日心说、并在天文学方面有突破性成就的人物,被后世的科学史家称为“天上的立法者”。 早期的开普勒深受柏拉图和毕达哥拉斯神秘主义宇宙结构论的影响,以数学的和谐性去探索宇宙。他用古希腊人已经发现的五个正多面体,跟当时已知的六颗行星的轨道套迭,从而解释了太阳系中包括地球在内恰好有六颗行星以及它们的轨道大小的原因,并将这些结论著成书《宇宙的秘密》发行。 第谷最大的天文学成就就是发现了开普勒。第谷在临终前将自己多年积累的天文观测资料全部交给了开普勒,叮嘱开普勒继续他的工作,并将观察结果出版发表。开普勒接过了第谷尚未完成的研究工作,后来在伽利略的影响下,通过对行星运动进行深入的研究,抛弃了柏拉图和毕达哥拉斯的学说,逐步走上真理和科学的轨道。 对火星轨道的研究是开普勒重新研究天体运动的起点。在第谷遗留下来的数据资料中,火星的资料是最丰富的,而哥白尼的理论在火星轨道上的偏离也是最大的。开始,开普勒用正圆编制火星的运行表,发现火星老是出轨。他便将正圆改为偏心圆。在进行了无数次的试验后,他找到了与事实较为符合的方案。可是,依照这个方法来预测卫星的位置,却跟第谷的数据不符,产生了8分的误差。这8分的误差相当于秒针0.02秒瞬间转过的角度。开普勒知道第谷的实验数据是可信的,那错误出在什么地方呢?正是这个不容忽略的8分使开普勒走上了天文学改革的道路。他敏感的意识到火星的轨道并不是一个圆周。随后,在进行了多次实验后,开普勒将火星轨道确定为椭圆,并用三角定点法测出地球的轨道也是椭圆,断定它运动的线速度跟它与太阳的距离有关。经过长期繁复的计算和无数次失败,他终于发现了行星运动的三条定律:
1.所有行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上;
2.行星的向径在相等的时间内扫过相等的面积。
3.所有行星轨道半长轴的三次方跟公转周期的二次方的比值都相等,即行星运动三定律的发现为经典天文学奠定了基石,并导致数十年后万有引力定律的发现。
另外,他在出版的《哥白尼天文学概要》叙述了他对宇宙结构和大小的观点;在《彗星论》中,他指出了太阳光排斥彗头的物质,造成了彗尾总是背着太阳;1627年出版的《鲁道夫星表》是根据他的行星运动定律和第谷的观测资料编制的。根据此表可以知道行星的位置,精度比以前的任何星表都高,直到十八世纪中叶,它一直被视为天文学上的标准星表。他于1629年出版的《稀奇的1631年天象》中,正确预言了1631年11月7日的水星凌日和12月6日的金星凌日现象。 所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 若用r代表椭圆轨道的半长轴,t代表公转周期,则 (r^3)/(t^2)=k=gm/(4π^2)(m为中心天体质量) 比值k是一个与行星无关的常量,只与中心体质量有关。 r1:r2=(t1:t2)^2/3 t1:t2=(r1:r2)^3/2
|
上一个物理: 牛顿的万有引力定律?_ 下一个物理: 极坐标方程r=acos4θ的图形是什么? |
|
|
|
力学 |
没有任何图片物理 |
|
|
|
|
|
|
|
|
|
|
|
|
|