直径的千分之一,即相当于烟尘中的颗粒大小。在电脑模拟期间,研究人员依据他们当前对尘埃微粒生成速度的估计,将其放入在今天的柯伊伯带发现的三种轨道中的一种。
从电脑模拟生成的数据中,研究人员制作出了代表从远处看到的太阳系红外图像的合成照片。通过一种称为共鸣的引力效应,海王星令附近尘埃微粒进入优先轨道。这使得海王星附近产生了一个“清除区”,同时,在其围绕太阳运行前后,尘埃微粒数量增加。斯塔克解释说:“我们从中了解到的一件事是,即便在今天的太阳系中,尘埃碰撞仍然在柯伊伯带扮演着重要角色。”
这是因为,碰撞往往会在大的尘埃微粒活动到距其生成地很远的地方之前,便将它们统统摧毁,导致横跨海王星轨道两边的尘埃光环相对稠密。为准确了解柯伊伯带更年轻、更笨重版本的状况,研究小组利用超级电脑加快尘埃生成速度。过去,柯伊伯带含有更多碰撞更为频繁的物体,从而以更快的速度产生尘埃微粒。尘埃微粒数量越多,微粒之间的撞击就越频繁。
全面掌握太阳系尘埃盘信息
借助运用更高对撞速度的不同模型,研究小组根据尘埃生成数量制作出相应的图像,与最初的模型相比,这些模型产生尘埃的强度分别是前者的10倍、100倍和1000倍。科学家由此推算出在柯伊伯带的年代分别为7亿年、1亿年和1500万年时,尘埃在数量增加后对周围环境的影响。
库切纳说:“结果让我们大吃一惊。”随着对撞变得日趋重要,大尘埃微粒从柯伊伯带逃生的几率大大降低。随着时间的推移,今天的尘埃盘变成一个稠密、明亮的光环,而这个光环与其他恒星(特别是北落师门星)周围的光环具有惊人的相似之处。
斯塔克说:“令人惊奇的是,我们以前在其他恒星周围见过这些狭长的光环。下一步,我们将会模拟北落师门星和其他恒星周围的尘埃盘,以了解尘埃分布如何向我们透露行星存在的信息。”研究人员还计划通过制作更靠近太阳的其他天体的模型,更为全面地掌握太阳系尘埃盘的信息,包括柯伊伯带以及数千个因木星引力而聚在一起的所谓特洛伊小行星。(孝文)
上一页 [1] [2]