嫦娥二号卫星将于10月1日至3日在西昌卫星发射中心择机发射。据探月工程有关负责人介绍,嫦娥二号卫星将完成六大工程目标和四大科学目标。
六大工程目标包括:
一、突破运载火箭直接将卫星发射至地月转移轨道的发射技术。突破直接进入奔月轨道的弹道设计技术、运载火箭低温三子级滑行时间可调技术,利用长征三号丙运载火箭将卫星直接送入地月转移轨道,降低二期工程后续任务的实施风险。
二、试验X频道深空测控技术,初步验证深空测控体制。在嫦娥二号卫星上搭载X频段应答机,与我国X频段地面测控设备配合,验证X频段测控体制,为嫦娥三号任务积累工程经验。
三、验证100公里月球轨道捕获技术。选择与嫦娥三号任务相似的奔月、月球捕获轨道,通过实际飞行掌握直接奔月和100公里近月捕获技术,为嫦娥三号任务探索技术途径;嫦娥二号卫星在100公里轨道长时间运行,探测100公里轨道空间环境,积累更多的近月空间环境数据,提高月球探测热红外分析模型的准确性。
四、验证100公里×15公里轨道机动与快速测定轨技术。开展100公里×15公里轨道机动试验,验证嫦娥三号任务着陆前在不可见弧段变轨的星地协同程序;在100公里×15公里轨道飞行期间,验证100公里×15公里轨道快速测定轨能力,这些测定轨数据对深入研究月球重力场分布,提高重力场模型精度有重要意义。
五、试验低密度校验码(LDPC)遥测信道编码、高速数据传输、降落相机等技术。配置降落相机,校验其对月成像能力;试验强纠错能力的LDPC信道编译码技术,提高卫星遥测链路性能,为探月工程和其他深空探测项目提供技术储备;将卫星数传码速率提高至6Mbit/s,试验12 Mbit/s,以期满足数据传输量增大的需求。
六、对嫦娥三号任务预选着陆区进行高分辨率成像试验。在100公里×15公里轨道,CCD立体相机在15公里近月点处对嫦娥三号任务预选着陆区进行优于1.5米分辨率成像试验;在100公里圆轨道,对预选着陆区进行优于10米分辨率成像。利用预案着陆区月表图像,绘制三维地形图,有利于定量评估预选着陆区的特性,提高嫦娥三号任务着陆安全性。
四大科学目标包括:
一、获取月球表面三维影像,分辨率优于10米。利用CCD立体相机获取高分辨率的月球表面三维影像,结合激光高度计获取的月表地形高程数据,可获取月球表面高精度地形数据,为后续着陆区优选提供依据,同时为划分月球表面的地貌单元精细结构、断裂和环形构造,提供原始资料。
二、探测月球物质成分。利用经技术改进的γ射线谱仪和X射线谱仪,可以探测月球表面9种元素——硅、镁、铝、钙、钛、钾、钍、铀的含量与分布特征,获得更高空间分辨率和探测精度的元素分布图。
三、探测月壤特性。利用微波探测技术,测量月球表面的微波辐射特征,获取3.0GHz、7.8GHz、19.35GHz、37GHz的微波辐射亮度温度数据,估算月壤厚度。
四、探测地月与近月空间环境。嫦娥二号卫星在轨运行期间正是太阳活动高峰年,是探测研究太阳高能粒子事件、CME、太阳风,及它们对月球环境影响的最佳探测时期。利用太阳高能粒子探测器和太阳风离子探测器,获取行星际太阳高能粒子与太阳风离子的通量、成分、能谱及其随时空变化的特征,可研究太阳活动与地月空间及近月空间环境的相互作用;获取地月空间环境数据,可为后续探月工程提供环境科学数据。 (记者何宗渝、陈玉明)
(责任编辑:刘晖)