●日冕物质抛射形成的激波阵面不直接冲向地球,就不会对地球产生严重影响。
●靠近地磁极的国家受到的影响较大。
然而并不是说太阳爆发越强,对地球的影响就越大。地球在距太阳1亿5千万公里远的公转轨道上运动。如果日冕物质抛射形成的激波阵面不直接冲向地球,或者说地球没在太阳爆发的直接打击范围内,就不会对地球产生严重影响。比如2003年10月下旬和11月初,太阳上发生一系列X射线耀斑,并于11月4日观测到了近三十年来最大的X射线耀斑(级别为X28+,超出了卫星X射线探测器的量程),同时大量的日冕物质抛射现象相继发生。然而这些耀斑和日冕物质抛射对地球的影响比不上1989年3月上旬的一系列爆发事件。当时太阳上也产生了一系列X级耀斑(最大X15级)和大量的日冕物质抛射。这些爆发事件不仅损坏了一些人造卫星,而且导致加拿大魁北克地区电网崩溃。
记者:美国科学家描绘的“超级太阳风暴”袭击地球的情况非常可怕,可能会产生诸如大面积停电、通讯中断等严重后果。这一切真的会发生吗?
王华宁:这种情况是可能发生的。美国科学家对于最坏情况的预测并没有言过其实、耸人听闻。因为“太阳风暴”对高技术系统的打击尤为严重。在高度依赖信息技术的今天,如果1859年“太阳风暴”再次发生,的确会像美国国家科学院报告所描述的那样,给人类社会带来巨大灾难。然而“超级太阳风暴”是百年不遇的灾害性事件,具有偶然性和突发性。我们既不能放松对这种太阳风暴的警惕,也不要因此就误以为世界末日来临。地球磁场和大气是地球生物圈的保护伞,它们屏蔽了大量来自太阳和银河系的高能粒子对地球生命的冲击。如果太阳的“身体状况”不稳定,这个保护伞势必受到影响。太阳目前正处于青壮年,“身体状况”良好,为我们的地球家园提供了一个相对稳定的外部环境。然而我们不能因此放弃对太阳“身体状况”的监测,因为身体再好的壮年人也会“偶感风寒”。
另外,太阳风暴对各国家的影响程度还要取决于该国家所处的位置。一般来说,靠近地磁极的国家受到的影响大。加拿大大部分地区靠近地磁极,因而很容易受到太阳风暴的袭击。这也是1989年太阳风暴导致加大拿魁北克地区大停电的原因之一。
记者:我们国家在空间天气监测预测上,目前处于何种地位?做了哪些工作?
王华宁:虽然空间天气监测预测有很强的应用目标,但涉及众多基础研究领域:如太阳物理、空间物理和地球物理等。目前人类对于太阳风暴的预测能力还十分有限,原因是我们对空间天气过程的认识还处于起步阶段。空间天气的理论、方法和数据的全球共享度较高。我国是国际空间环境服务(International Space Environem ent Service,ISES)的成员之一。我国在北京时间每天下午2点向其他成员公布我们的观测数据,并对未来48小时太阳活动情况进行预报,也就是“48小时时效、24小时更新”。同样我们每天在不同时间段也会收到来自其他成员的观测数据和预报结果。
由于地球大气的影响,地面太阳观测精度不能与空间观测相比拟。地面单点也不能实现连续太阳监测。因此美国、日本、欧空局在过去数十年里相继发射了几十颗太阳观测卫星。其中有日本2006年发射的口径为0.5米的光学望远镜,用于观测太阳大气和磁场的精细结构。应该说我国的地基太阳观测是非常有特点的。相关理论研究和预报模式研究也处于国际前沿。但我国在天基太阳观测领域还是空白,至今没有天基太阳成像观测,第一手数据还要依赖于国际卫星数据。
早在上世纪80年代末,我国太阳物理专家艾国祥院士领衔提出了“空间太阳望远镜计划”。该计划拟将1米口径的光学望远镜发射到太空,用于观测太阳大气和磁场的精细结构。经历了二十多年的提高和完善,其探测技术与科学目标在国际上保持了领先地位。与此空间太阳望远镜相关的多项关键技术攻关已经完成。一旦1米口径光学望远镜为主体的“空间太阳望远镜”成功实现太阳观测,我国太阳活动监测能力和“太阳风暴”预警能力将大幅度提高。
上一页 [1] [2]